
 

 

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE  

(NAAC Accredited)  
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala) 

 
 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

 

COURSE MATERIALS  

2019 SCHEME 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CST 309 MANAGEMENT OF SOFTWARE SYSTEMS 
 

 

VISION OF THE INSTITUTION 

 
To mold true citizens who are millennium leaders and catalysts of change through excellence in 

education. 
 
MISSION OF THE INSTITUTION 

 
NCERC is committed to transform itself into a center of excellence in Learning and Research in 
Engineering and Frontier Technology and to impart quality education to mould technically competent 
citizens with moral integrity, social commitment and ethical values. 

 

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe 
discipline, culture and spiritually, and to mould them in to technological giants, dedicated research 

scientists and intellectual leaders of the country who can spread the beams of light and happiness among 
the poor and the underprivileged  
 
 
 
 
 
 
 
 
CSE DEPARTMENT, NCERC PAMPADY Page 1  



 

 

ABOUT DEPARTMENT 

 

Established in: 2002 

 

Course offered: B.Tech in Computer Science and Engineering    

 M.Tech in Computer Science and Engineering 

 

   M.Tech in Cyber Security 

 

Approved by AICTE New Delhi and Accredited by NAAC 

 

Affiliated to the University of Dr. A P J Abdul Kalam Technological University. 
 
 
 

 

DEPARTMENT VISION 

 

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals 

to facilitate continuous technological advancement. 

 
 
 

DEPARTMENT MISSION 

 

1. To Impart Quality Education by creative Teaching Learning Process 
 

2. To Promote cutting-edge Research and Development Process to solve real world problems 

with emerging technologies. 
 

3. To Inculcate Entrepreneurship Skills among Students. 
 

4. To cultivate Moral and Ethical Values in their Profession. 
 

5. 

 

PROGRAMME EDUCATIONAL OBJECTIVES 

 

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and 
Engineering through lifelong learning.  

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages, 
Web Services, System Tools and Components as per needs and specifications.  

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing 
environment by learning and applying new technologies.  

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills, 
Teamwork and leadership qualities.  

 
 
 
 
 

 

CSE DEPARTMENT, NCERC PAMPADY Page 2  



 

 

PROGRAM OUTCOMES (POS) 
 

Engineering Graduates will be able to: 
 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering problems. 

 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 
engineering problems reaching substantiated conclusions using first principles of mathematics, 
natural sciences, and engineering sciences. 

 
3. Design/development of solutions: Design solutions for complex engineering problems and 

design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 
considerations. 

 
4. Conduct investigations of complex problems: Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of the 
information to provide valid conclusions. 

 
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities with 
an understanding of the limitations. 

 
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess 

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the 
professional engineering practice. 

 
7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for 
sustainable development. 

 
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms 

of the engineering practice. 
 
9. Individual and team work: Function effectively as an individual, and as a member or leader in 

diverse teams, and in multidisciplinary settings. 
 
10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and write 
effective reports and design documentation, make effective presentations, and give and receive 
clear instructions. 

 
11. Project management and finance: Demonstrate knowledge and understanding of the engineering 

and management principles and apply these to one‘s own work, as a member and leader in a team, 
to manage projects and in multidisciplinary environments.  

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest context of technological change. 

 

PROGRAM SPECIFIC OUTCOMES (PSO) 

 

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for 

Real-time Problems and to investigate for its future scope. 
 

PSO2: Ability to learn and apply various methodologies for facilitating development of high 

quality System Software Tools and Efficient Web Design Models with a focus on performance 
 
 

CSE DEPARTMENT, NCERC PAMPADY Page 3  



 

 

Optimization. 
 

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating 

hardware/software products in the domains of Big Data Analytics, Web Applications and 

Mobile Apps to create innovative career path and for the socially relevant issues. 
 

 

COURSE OUTCOMES 
 
 

C305.1 Demonstrate Traditional and Agile Software Development approaches. K3 

C305.2 Prepare Software Requirement Specification and Software Design for a 

given problem. 
K3 

C305.3 Justify the significance of design patterns and licensing terms in software 

development, prepare testing, maintenance and DevOps strategies for a 

project 

K3 

C305.4 Demonstrate use of software project management concepts while planning, 

estimation, scheduling, tracking and change management of a project, with 

a traditional/agile framework. 

K3 

C305.5 Utilize SQA practices, Process Improvement techniques and Technology 

advancements in cloud based software models and containers & 

microservices. 

K3 

 
 
 

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES & PSO 
 
 
 

 
 

CO PSO Mapping 
 
 

CO‘S PSO1 PSO2 PSO3 

C305.1 
     

C305.2 
     

C305.3 
     

C305.4 
     

C305.5 
     

 

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1 
 

CO‘S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

C305.1 3 3 3 3  3      3 

C305.2 3 3 3 3  3    3 3 3 

C305.3 3 3 3 3    3  3 3 3 

C305.4 3 3 3 3  3   3 3 3 3 

C305.5 3 3 3 3  3      3 



 

 

CST 

309 

MANAGEMENT OF 

SOFTWARE SYSTEMS 

Category L T P Credit 
Year of 

Introduction 

PCC 3 0 0 3 2019 

 

Syllabus 

Module 1 : Introduction to Software Engineering (7 hours) 

Introduction to Software Engineering - Professional software development, Software engineering 

ethics. Software process models - The waterfall model, Incremental development. Process 

activities - Software specification, Software design and implementation, Software validation, 

Software evolution. Coping with change - Prototyping, Incremental delivery, Boehm's Spiral 

Model. Agile software development - Agile methods, agile manifesto - values and principles. 

Agile development techniques, Agile Project Management. Case studies : An insulin pump 

control system. Mentcare - a patient information system for mental health care. 

 

Module 2 : Requirement Analysis and Design (8 hours) 

 

Functional and non-functional requirements, Requirements engineering processes. Requirements 

elicitation, Requirements validation, Requirements change, Traceability Matrix. Developing use 

cases, Software Requirements Specification Template, Personas, Scenarios, User stories, Feature 

identification. Design concepts - Design within the context of software engineering, Design 

Process, Design concepts, Design Model. Architectural Design - Software Architecture, 

Architectural Styles, Architectural considerations, Architectural Design Component level design 

- What is a component?, Designing Class-Based Components, Conducting Component level 

design, Component level design for web-apps. Template of a Design Document as per ―IEEE Std 

1016-2009 IEEE Standard for Information Technology Systems Design Software Design 

Descriptions‖. Case study: The Ariane 5 launcher failure. 

 

Module 3 : Implementation and Testing (9 hours) 

 

Object-oriented design using the UML, Design patterns, Implementation issues, Open-source 

development - Open-source licensing - GPL, LGPL, BSD. Review Techniques - Cost impact of 

Software Defects, Code review and statistical analysis. Informal Review, Formal Technical 

Reviews, Post-mortem evaluations. Software testing strategies - Unit Testing, Integration 

Testing, Validation testing, System testing, Debugging, White box testing, Path testing, Control 

Structure testing, Black box testing, Testing Documentation and Help facilities. Test automation, 

Test-driven development, Security testing. Overview of DevOps and Code Management - Code 

management, DevOps automation, Continuous Integration, Delivery, and Deployment 

(CI/CD/CD). Software Evolution - Evolution processes, Software maintenance. 

 

 

 

 

Module 4 : Software Project Management (6 hours) 



 

 

 

Software Project Management - Risk management, Managing people, Teamwork. Project 

Planning, Software pricing, Plan-driven development, Project scheduling, Agile planning. 

Estimation techniques, COCOMO cost modeling. Configuration management, Version 

management, System building, Change management, Release management, Agile software 

management - SCRUM framework. Kanban methodology and lean approaches. 

 

Module 5 : Software Quality, Process Improvement and Technology trends (6 hours) 

 

Software Quality, Software Quality Dilemma, Achieving Software Quality Elements of 

Software Quality Assurance, SQA Tasks , Software measurement and metrics. Software Process 

Improvement(SPI), SPI Process CMMI process improvement framework, ISO 9001:2000 for 

Software. Cloud-based Software - Virtualisation and containers, Everything as a service(IaaS, 

PaaS), Software as a service. Microservices Architecture - Microservices, Microservices 

architecture, Microservice deployment. 

 

Text Books 

 
1. Book 1 - Ian Sommerville, Software Engineering, Pearson Education, Tenth edition, 2015. 

2. Book 2 - Roger S. Pressman, Software Engineering : A practitioner‘s approach, McGraw 

Hill publication, Eighth edition, 2014 

3. Book 3 - Ian Sommerville, Engineering Software Products: An Introduction to 

Modern Software Engineering, Pearson Education, First Edition, 2020. 

  



 

 

References 

 
1. IEEE Std 830-1998 - IEEE Recommended Practice for Software Requirements 

SpeciÞcations 

2. IEEE Std 1016-2009 IEEE Standard for Information Technology—Systems Design— 

Software Design DescriptionsDavid J. Anderson, Kanban, Blue Hole Press 2010 

3. David J. Anderson, Agile Management for Software Engineering, Pearson, 2003 

4. Walker Royce, Software Project Management : A unified framework, Pearson Education, 

1998 

5. Steve. Denning, The age of agile, how smart companies are transforming the way work gets 

done. New York, Amacom, 2018. 

6. Satya Nadella, Hit Refresh: The Quest to Rediscover Microsoft‘s Soul and Imagine a Better 

Future for Everyone, Harper Business, 2017 

7. Henrico Dolfing, Project Failure Case Studies: Lessons learned from other people‘s 

mistakes, Kindle edition 

8. Mary Poppendieck, Implementing Lean Software Development: From Concept to Cash, 

Addison-Wesley Signature Series, 2006 

9. StarUML documentation - https://docs.staruml.io/ 

10. OpenProject documentation - https://docs.openproject.org/ 

11. BugZilla documentation - https://www.bugzilla.org/docs/ 

12. GitHub documentation - https://guides.github.com/ 

13. Jira documentation - https://www.atlassian.com/software/jira 

 

 

http://www.bugzilla.org/docs/
http://www.atlassian.com/software/jira
http://www.atlassian.com/software/jira


 

 

Model Question Paper 

 

QP CODE: 

Reg No: _ 

Name :    

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY 

 

 

PAGES : 3 

FIFTH SEMESTER B.TECH DEGREE EXAMINATION, MONTH & YEAR 

Course Code: CST 309 

Course Name: Management of Software Systems 

 
Duration: 3 Hrs Max. Marks :100 

PART A 

Answer all Questions. Each question carries 3 marks 
 

1. Why professional software that is developed for a customer is not simply the 

programs that have been developed and delivered. 

 

2. Incremental software development could be very effectively used for customers 

who do not have a clear idea about the systems needed for their operations. 

Justify. 

 

3. Identify any four types of requirements that may be defined for a software system 
 

4. Describe software architecture 
 

5. Differentiate between GPL and LGPL? 
 

6. Compare white box testing and black box testing. 
 

7. Specify the importance of risk management in software project management? 
 

8. Describe COCOMO cost estimation model. 
 

9. Discuss the software quality dilemma 
 

10. List the levels of the CMMI model? (10x3=30) 

Part B 

(Answer any one question from each module. Each question carries 14 

Marks) 

11. (a) Compare waterfall model and spiral model 
 

   (8) 



 

 

 

 (b) Explain Agile ceremonies and Agile manifesto  

   (6) 

 
12. 

 
(a) 

 
Illustrate software process activities with an example. 

 

   (8) 

 
(b) Explain Agile Development techniques and Agile Project Management (6) 

13. (a) What are functional and nonfunctional requirements? Imagine that you are 

developing a library management software for your college, list eight 

functional requirements and four nonfunctional requirements. 

 

  (10) 

  

(b) 
 

List the components of a software requirement specification? 

 

   (4) 

  
OR 

 

14. (a) Explain Personas, Scenarios, User stories and Feature identification? (8) 

 
(b) Compare Software Architecture design and Component level design (6) 

15. (a) Explain software testing strategies. (8) 

 
(b) Describe the formal and informal review techniques. (6) 

  
OR 

 

16. (a) Explain Continuous Integration, Delivery, and Deployment CI/CD/CD) 
 

   (8) 

 
(b) Explain test driven development (6) 

17. (a) What is a critical path and demonstrate its significance in a project schedule 

with the help of a sample project schedule. 

(8) 

 
(b) Explain plan driven development and project scheduling. (6) 

  
OR 

 

18. (a) Explain elements of Software Quality Assurance and SQA Tasks. (6) 

  
(b) 

 
What is algorithmic cost modeling? What problems does it suffer from when 

 
(8) 



 

 

 

  compared with other approaches to cost estimation?  

19. (a) Explain elements of Software Quality Assurance and SQA Tasks. (8) 

 
(b) Illustrate SPI process with an example. (6) 

  
OR 

 

20. (a) Compare CMMI and ISO 9001:2000. (8) 

 
(b) How can Software projects benefit from Container deployment and Micro 

service deployment? 

(6 ) 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

Teaching Plan 

 

 
No 

 
Contents 

No of 

Lecture 

Hrs 

Module 1 : Introduction to Software Engineering (7 hours) 

1.1 Introduction to Software Engineering.[ Book 1, Chapter 1] 1 hour 

1.2 Software process models [Book 1 - Chapter 2] 1 hour 

1.3 Process activities [Book 1 - Chapter 2] 1 hour 

1.4 Coping with change [Book 1 - Chapter 2, Book 2 - Chapter 4] 1 hour 

1.5 Case studies : An insulin pump control system. Mentcare - a patient 

information system for mental health care. [Book 1 - Chapter 1] 

1 hour 

1.6 Agile software development [Book 1 - Chapter 3] 1 hour 

1.7 Agile development techniques, Agile Project Management.[Book 1 - Chapter 

3] 

1 hour 

Module 2 : Requirement Analysis and Design (8 hours) 

2.1 Functional and non-functional requirements, Requirements engineering 

processes [Book 1 - Chapter 4] 

1 hour 

2.2 Requirements elicitation, Requirements validation, Requirements change, 

Traceability Matrix [Book 1 - Chapter 4] 

1 hour 

2.3 Developing use cases, Software Requirements Specification Template [Book 

2 - Chapter 8] 

1 hour 



 

 

 

2.4 Personas, Scenarios, User stories, Feature identification [Book 3 - Chapter 3] 1 hour 

2.5 Design concepts [Book 2 - Chapter 12] 1 hour 

2.6 Architectural Design [Book 2 - Chapter 13] 1 hour 

2.7 Component level design [Book 2 - Chapter 14] 1 hour 

2.8 Design Document Template. Case study: The Ariane 5 launcher failure. [Ref 

- 2, Book 2 - Chapter 16] 

1 hour 

Module 3 : Implementation and Testing (9 hours) 

3.1 Object-oriented design using the UML, Design patterns [Book 1 - Chapter 7] 1 hour 

3.2 Implementation issues, Open-source development - Open-source licensing - 

GPL, LGPL, BSD [Book 1 - Chapter 7] 

1 hour 

3.3 Review Techniques - Cost impact of Software Defects, Code review and 

statistical analysis. [Book 2 - Chapter 20] 

1 hour 

34 Informal Review, Formal Technical Reviews, Post-mortem evaluations. 

[Book 2 - Chapter 20] 

1 hour 

3.5 Software testing strategies - Unit Testing, Integration Testing, Validation 

testing, System testing and Debugging (basic concepts only). [Book 2 - 

Chapter 22] 

1 hour 

3.6 White box testing, Path testing, Control Structure testing, Black box testing. 

Test documentation [Book 2 - Chapter 23] 

1 hour 

3.7 Test automation, Test-driven development, Security testing. [Book 3 - 

Chapter 9] 

1 hour 

3.8 DevOps and Code Management - Code management, DevOps automation, 

CI/CD/CD. [Book 3 - Chapter 10] 

1 hour 

3.9 Software Evolution - Evolution processes, Software maintenance. [Book 1 - 

Chapter 9] 

1 hour 

Module 4 : Software Project Management (6 hours) 

4.1 Software Project Management - Risk management, Managing people, 

Teamwork [Book 1 - Chapter 22] 

1 hour 

4.2 Project Planning - Software pricing, Plan-driven development, Project 

scheduling, Agile planning [Book 1 - Chapter 23] 

1 hour 

4.3 Estimation techniques [Book 1 - Chapter 23] 1 hour 

4.4 Configuration management [Book 1 - Chapter 25] 1 hour 



 

 

 

4.5 Agile software management - SCRUM framework [Book 2 - Chapter 5] 1 hour 

4.6 Kanban methodology and lean approaches.[Ref 9 - Chapter 2] 1 hour 

Module 5 : Software Quality, Process Improvement and Technology trends (6 

hours) 

5.1 Software Quality, Software Quality Dilemma, Achieving Software Quality. 

[Book 2 - Chapter 19] 

1 hour 

5.2 Elements of Software Quality Assurance, SQA Tasks , Software 

measurement and metrics. [Book 3 - Chapter 21] 

1 hour 

5.3 Software Process Improvement (SPI), SPI Process [Book 2 - Chapter 37] 1 hour 

5.4 CMMI process improvement framework, ISO 9001:2000 for Software. 

[Book 2 - Chapter 37] 

1 hour 

5.5 Cloud-based Software - Virtualisation and containers, IaaS, PaaS, 

SaaS.[Book 3 - Chapter 5] 

1 hour 

5.6 Microservices Architecture - Microservices, Microservices architecture, 

Microservice deployment [Book 3 - Chapter 6] 

1 hour 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

QUESTION PAPER 

SL. 

.NO. 

QUESTIONS KL/CO 

MODULE 1 

1 Write   the advantages of an incremental development model over 

a waterfall model? 

K3/CO1 

 

K3/CO1 

 

2 Illustrate how the process differs in agile software development and 

traditional software development with a socially relevant case study.  

                                                    MODULE 2 

3 How to prepare a software requirement specification? K2/CO2 

4 Differentiate between Architectural design and Component level 

design. 

K4/CO2 

 

K2/CO2 

 

K3/CO2 

 

5 How does agile approaches help software developers to capture 

and define the user requirements effectively? 

6 Write the relevance of the SRS specification in software 

development? 

7 Prepare a use case diagram for a library management system. K6/CO2 

MODULE 3 

8 Differentiate between the different types of software testing strategies. K4/CO3 

9 Justify the need for DevOps practices? K5/CO3 

10 How do design patterns help software architects communicate the 

design of a complex system effectively? 

           K2/CO3 

11 Write the proactive approaches one can take to optimise efforts in the 

testing phase? 

     K3/CO3 

MODULE 4 

12 Illustrate the activities involved in software project management for 

a socially relevant problem? 

K3/CO4 

13 How do SCRUM, Kanban and Lean methodologies help software 

project  management? 

K2/CO4 

 

14 Is rolling level planning in software project management 

beneficial? Justify your answer. 

K5/CO4 

15 How would you assess the risks in your software development 

project? Explain how you can manage identified risks? 

K2/CO4 



 

 

MODULE 5 

16 Justify the importance of Software Process improvement? K5/CO5 

17 Explain the benefits of cloud based software development, 

containers and microservices. 

K2/CO5 

18 Give the role of retrospectives in improving the software development 

process. 

K2/CO5 

19 Illustrate the use of project history data as a prediction tool to plan 

future socially relevant projects. 

K2/CO5 

 

 
 
 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 1 

 

 

 

 

 

MODULE 

NOTES 

 

 

 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 2 

 

 

 

 

 

MODULE 1 

NOTES 

 

 

  



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 3 

 

 

 

MODULE 1  : Introduction to Software Engineering (7 hours) 
 

  Introduction to Software Engineering - Professional software development, 

Software engineering ethics 

  Software process models - The waterfall model, Incremental development. 

Process activities - Software specification, Software design and implementation, 

Software validation, Software evolution. Coping with change - Prototyping, 

Incremental delivery, Boehm's Spiral Model. 

  Agile software development - Agile methods, agile manifesto - values and 

principles. Agile development techniques, Agile Project Management. 

 Case studies: An insulin pump control system. Mentcare - a patient information 

system for mental health care. 

1.1 Professional software development 

 Software is not just a program themselves but also all associated documentation and 

configuration data. 

 
Frequently asked questions about software engineering 

 

Question Answer 

What is software? Computer programs and associated 

documentation. Software products may be 

developed for a particular customer or 

may be developed for a general market. 

What are the attributes of good software? Good software should deliver the required 

functionality and performance to the user 

and should be maintainable, dependable 

and usable. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 4 

 

 

What is software engineering? Software engineering is an engineering 

discipline that is concerned with all 

aspects of software production. 

 

What are the fundamental software 

engineering activities? 

Software specification, software 

development, software validation and 

software evolution. 

What is the difference between software 

engineering and computer science? 

Computer science focuses on theory and 

fundamentals; software engineering is 

concerned with the practicalities of 

developing and delivering useful 

software. 

What is the difference between software 

engineering and system engineering? 

System engineering is concerned with all 

aspects of computer-based systems 

development including hardware, 

software and process engineering. 

Software engineering is part of this more 

general process. 

What are the key challenges facing 

software engineering? 

Coping with increasing diversity, 

demands for reduced delivery times and 

developing trustworthy software. 

What are the costs of software 

engineering? 

Roughly 60% of software costs are 

development costs, 40% are testing costs. 

For custom software, evolution costs 

often exceed development costs. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 5 

 

 

 

What are the best software engineering 

techniques and methods? 

While all software projects have to be 

professionally managed and developed, 

different techniques are appropriate for 

different types of system. For example, 

games should always be developed using 

a series of prototypes whereas safety 

critical control systems require a complete 

and analyzable specification to be 

developed. You can‘t, therefore, say that 

one method is better than another. 

What differences has the web made to 

software engineering? 

The web has led to the availability of 

software services and the possibility of 

developing highly distributed service- 

based systems. Web-based systems 

development has led to important 

advances in programming languages and 

software reuse. 

 

Software Products 

 Generic products 

 Stand-alone systems that are marketed and sold to any customer who wishes to buy 

them. 

 Examples – PC software such as graphics programs, project management tools; 

CAD software; software for specific markets such as appointments systems for 

dentists. 

 Organization that develops the software controls the  

software specification. 

 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 6 

 

 

 

 

Customized products(bespoke) 

 

 Software that is commissioned by a specific customer to meet their own needs. 
 

 Examples – embedded control systems, air traffic control software, traffic 

monitoring systems. 

 Specification is developed and controlled by the organization ie buying the 

software. 

 

Essential Attributes of Good Software 
 

Product characteristics Description 

Maintainability Software should be written in such a way so that 

it can evolve to meet the changing needs of 

customers. This is a critical attribute because 

software change is an inevitable requirement of 

a changing business environment. 

Dependability and security Software dependability includes a range of 

characteristics including reliability, security 

and safety. Dependable software should not 

cause physical or economic damage in the event 

of system failure. Malicious users should not be 

able to access or damage the system. 

Efficiency Software should not make wasteful use of 

system resources such as memory and processor 

cycles. Efficiency therefore includes 

responsiveness, processing time, memory 

utilisation, etc. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 7 

 

 

Acceptability Software must be acceptable to the type of users 

for which it is designed. This means that it must 

be understandable, usable and compatible with 

other systems that they use. 

 

1.1.1 Software Engineering 

 Software engineering is an engineering discipline that is concerned with all aspects of 

software production from the early stages of system specification through to 

maintaining the system after it has gone into use. 

 Engineering discipline 

 Using appropriate theories and methods to solve problems within the 

organizational and financial constraints. 

 All aspects of software production 

 Not just technical process of development. Also project management and the 

development of tools, methods etc. to support software production. 

Software Process Activities 

 Software specification, where customers and engineers define the software that is to 

be produced and the constraints on its operation. 

 Software development, where the software is designed and programmed. 

 Software validation, where the software is checked to ensure that it is what the 

customer requires. 

 Software evolution, where the software is modified to reflect changing customer and 

market requirements. 

General issues that affect most Software 

 Heterogeneity 

 Increasingly, systems are required to operate as distributed systems across 

networks that include different types of computer and mobile devices. 

 Business and social change 

 Business and society are changing incredibly quickly as emerging economies 

develop and new technologies become available. They need to be able to change 

their existing software and to rapidly develop new software. 

 Security and trust 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 8 

 

 

 As software is intertwined with all aspects of our lives, it is essential that we 

can trust that software. 

 

1.1.2 Software Engineering Diversity 

 There are many different types of software system and there is no universal set of 

software techniques that is applicable to all of these. 

 The software engineering methods and tools used depend on the type of application 

being developed, the requirements of the customer and the background of the 

development team. 

Application Types 

 Stand-alone applications 

 These are application systems that run on a local computer, such as a PC. They 

include all necessary functionality and do not need to be connected to a 

network. 

 Interactive transaction-based applications 

 Applications that execute on a remote computer and are accessed by users from 

their own PCs or terminals. These include web applications such as e-commerce 

applications. 

 Embedded control systems 

 These are software control systems that control and manage hardware devices. 

Numerically, there are probably more embedded systems than any other type of 

system. 

 Batch processing systems 

 These are business systems that are designed to process data in large batches. 

They process large numbers of individual inputs to create corresponding 

outputs. 

 Entertainment systems 

 These are systems that are primarily for personal use and which are intended to 

entertain the user. 

 Systems for modeling and simulation 

 These are systems that are developed by scientists and engineers to model 

physical processes or situations, which include many, separate, interacting 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 9 

 

 

objects. 

 Data collection systems 

 These are systems that collect data from their environment using a set of sensors 

and send that data to other systems for processing. 

 Systems of systems 

 These are systems that are composed of a number of other software systems. 

 software that has already been developed rather than write new software. 

1.1.3 Software Engineering and the Web 

 The Web is now a platform for running application and organizations are increasingly 

developing web-based systems rather than local systems. 

 Web services allow application functionality to be accessed over the web. 

 Cloud computing is an approach to the provision of computer services where 

applications run remotely on the ‗cloud‘. 

 Users do not buy software buy pay according to use. 

Web software Engineering 

 Software reuse is the dominant approach for constructing web-based systems. 

 When building these systems, you think about how you can assemble them from 

pre-existing software components and systems. 

 Web-based systems should be developed and delivered incrementally. 

 It is now generally recognized that it is impractical to specify all the 

requirements for such systems in advance. 

 User interfaces are constrained by the capabilities of web browsers. 

 Technologies such as AJAX allow rich interfaces to be created within a web 

browser but are still difficult to use. Web forms with local scripting are more 

commonly used. 

Web based Software Engineering 

 Web-based systems are complex distributed systems but the fundamental principles of 

software engineering discussed previously are as applicable to them as they are to any 

other types of system. 

 The fundamental ideas of software engineering, discussed in the previous section, 

apply to web-based software in the same way that they apply to other types of software 

system. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 10 

 

 

1.2 Software Engineering Ethics 

 Software engineering involves wider responsibilities than simply the application of 

technical skills. 

 Software engineers must behave in an honest and ethically responsible way if they are 

to be respected as professionals. 

 Ethical behavior is more than simply upholding the law but involves following a set 

of principles that are morally correct. 

Issues of Professional Responsibility 

 Confidentiality 

 Engineers should normally respect the confidentiality of their employers or 

clients irrespective of whether or not a formal confidentiality agreement has 

been signed. 

 Competence 

 Engineers should not misrepresent their level of competence. They should not 

knowingly accept work which is out with their competence. 

 Intellectual property rights 

 Engineers should be aware of local laws governing the use of intellectual 

property such as patents, copyright, etc. They should be careful to ensure that 

the intellectual property of employers and clients is protected. 

 Computer misuse 

 Software engineers should not use their technical skills to misuse other people‘s 

computers. Computer misuse ranges from relatively trivial (game playing on an 

employer‘s machine, say) to extremely serious (dissemination of viruses). 

ACM/IEEE Code of Ethics 

 The professional societies in the US have cooperated to produce a code of ethical 

practice. 

 Members of these organisations sign up to the code of practice when they join. 

 The Code contains eight Principles related to the behavior of and decisions made by 

professional software engineers, including practitioners, educators, managers, 

supervisors and policy makers, as well as trainees and students of the profession. 

ACM/IEEE Code of Ethics 

 Software Engineering Code of Ethics and Professional Practice 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 11 

 

 

 ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional 

Practices 

 PREAMBLE 

 The short version of the code summarizes aspirations at a high level of the abstraction; 

the clauses that are included in the full version give examples and details of how these 

aspirations change the way we act as software engineering professionals. Without the 

aspirations, the details can become legalistic and tedious; without the details, the 

aspirations can become high sounding but empty; together, the aspirations and the 

details form a cohesive code. 

 Software engineers shall commit themselves to making the analysis, specification, 

design, development, testing and maintenance of software a beneficial and respected 

profession. In accordance with their commitment to the health, safety and welfare of 

the public, software engineers shall adhere to the following Eight Principles: 

Ethical principles 
 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 12 

 

 

 

1.3 Case Studies 

 A personal insulin pump 

 An embedded system in an insulin pump used by diabetics to maintain blood 

glucose control. 

 A mental health case patient management system 

 A system used to maintain records of people receiving care for mental health 

problems. 

 A wilderness weather station 

 A data collection system that collects data about weather conditions in remote 

areas. 

1.3.1 Insulin Pump Control System 

 Collects data from a blood sugar sensor and calculates the amount of insulin required 

to be injected. 

 Calculation based on the rate of change of blood sugar levels. 

 Sends signals to a micro-pump to deliver the correct dose of insulin. 

 Safety-critical system as low blood sugars can lead to brain malfunctioning, coma and 

death; high-blood sugar levels have long-term consequences such as eye and kidney 

damage. 

Insulin Pump Hardware Architecture 
 

 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 13 

 

 

 

Activity model of the insulin pump 
 

 

 

Essential High-Level Requirements 

 The system shall be available to deliver insulin when required. 

 The system shall perform reliably and deliver the correct amount of insulin to 

counteract the current level of blood sugar. 

 The system must therefore be designed and implemented to ensure that the system 

always meets these requirements. 

 
1.3.2 A Patient Information System for Mental Health Care 

 A patient information system to support mental health care is a medical information 

system that maintains information about patients suffering from mental health 

problems and the treatments that they have received. 

 Most mental health patients do not require dedicated hospital treatment but need to 

attend specialist clinics regularly where they can meet a doctor who has detailed 

knowledge of their problems. 

 

 To make it easier for patients to attend, these clinics are not just run in hospitals. They 

may also be held in local medical practices or community centres. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 14 

 

 

 

MHC-PMS 

 The MHC-PMS (Mental Health Care-Patient Management System) is an information 

system that is intended for use in clinics. 

 It makes use of a centralized database of patient information but has also been designed 

to run on a PC, so that it may be accessed and used from sites that do not have secure 

network connectivity. 

 When the local systems have secure network access, they use patient information in the 

database but they can download and use local copies of patient records when they are 

disconnected. 

 
MHC-PMS goals 

 To generate management information that allows health service managers to assess 

performance against local and government targets. 

 To provide medical staff with timely information to support the treatment of patients. 

The organization of the MHC-PMS 

 
 

MHC-PMS Key Features 

 Individual care management 

 Clinicians can create records for patients, edit the information in the system, 

view patient history, etc. The system supports data summaries so that doctors 

can quickly learn about the key problems and treatments that have been prescribed. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 15 

 

 

 Patient monitoring 

 The system monitors the records of patients that are involved in treatment and 

issues warnings if possible problems are detected. 

 Administrative reporting 

 The system generates monthly management reports showing the number of 

patients treated at each clinic, the number of patients who have entered and left 

the care system, number of patients sectioned, the drugs prescribed and their 

costs, etc. 

MHC-PMS concerns 

 Privacy 

 It is essential that patient information is confidential and is never disclosed to 

anyone apart from authorised medical staff and the patient themselves. 

 Safety 

 Some mental illnesses cause patients to become suicidal or a danger to other 

people. Wherever possible, the system should warn medical staff about 

potentially suicidal or dangerous patients. 

 The system must be available when needed otherwise safety may be 

compromised and it may be impossible to prescribe the correct medication to 

patients. 

1.3.3 Wilderness Weather Station 

 The government of a country with large areas of wilderness decides to deploy several 

hundred weather stations in remote areas. 

 Weather stations collect data from a set of instruments that measure temperature and 

pressure, sunshine, rainfall, wind speed and wind direction. 

 The weather station includes a number of instruments that measure weather 

parameters such as the wind speed and direction, the ground and air 

temperatures, the barometric pressure and the rainfall over a 24-hour period. 

Each of these instruments is controlled by a software system that takes 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 16 

 

 

 

parameter readings periodically and manages the data collected from the 

instruments. 

 
The Weather Station’s Environment 
 

 
 

 

 The weather station system 

Weather information system 

This is responsible for collecting weather data, carrying out some initial data 

processing and transmitting it to the data management system. 

 The data management and archiving system 

This system collects the data from all of the wilderness weather stations, carries out 

data processing and analysis and archives the data. 

 The station maintenance system 

This system can communicate by satellite with all wilderness weather stations to 

monitor the health of these systems and provide reports of problems. 

 
Additional software functionality 

 Monitor the instruments, power and communication hardware and report faults to the 

management system. 

 Manage the system power, ensuring that batteries are charged whenever the 

environmental conditions permit but also that generators are shut down in potentially 

damaging weather conditions, such as high wind. 

 Support dynamic reconfiguration where parts of the software are replaced with new 

versions and where backup instruments are switched into the system in the event of 

system failure. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 17 

 

 

 

The Software Process 

 A structured set of activities required to develop a 

software system. 

 Many different software processes but all involve: 

 Specification – defining what the system should do; 

 Design and implementation – defining the organization of the system and 

implementing the system; 

 Validation – checking that it does what the customer wants; 

 Evolution – changing the system in response to changing customer needs. 

 A software process model is an abstract representation of a process. It presents a 

description of a process from some particular perspective. 

Software Process Descriptions 

 When we describe and discuss processes, we usually talk about the activities in these 

processes such as specifying a data model, designing a user interface, etc. and the 

ordering of these activities. 

 Process descriptions may also include: 

 Products, which are the outcomes of a process activity; 

 Roles, which reflect the responsibilities of the people involved in the process; 

 Pre- and post-conditions, which are statements that are true before and after a 

process activity has been enacted or a product produced. 

Plan-Driven and Agile Processes 

 Plan-driven processes are processes where all of the process activities are planned in 

advance and progress is measured against this plan. 

 In agile processes, planning is incremental and it is easier to change the process to 

reflect changing customer requirements. 

 In practice, most practical processes include elements of both plan-driven and agile 

approaches. 

 There are no right or wrong software processes. 

Software Process Models 

 The waterfall model 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 18 

 

 

 

 Plan-driven model. Separate and distinct phases of specification and 

development. 

 Incremental development 

 Specification, development and validation are interleaved. May be plan-driven 

or agile. 

 Reuse-oriented software engineering(Operation and maintenance) 

 The system is assembled from existing components. May be plan-driven or 

agile. 

 In practice, most large systems are developed using a process that incorporates 

elements from all of these models. 

 
The Waterfall Model 

Waterfall model phases 
 

There are separate identified phases in the waterfall model: 

 Requirements analysis and definition: The system services, constraints 

and goals are established by consultation with system users. 

 System and software design: The systems design process allocates the 

requirements to either hardware or software systems by establishing an 

overall system architecture. Software design involves identifying and 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 19 

 

 

 

describing the fundamental software system abstractions and their 

relationships. 

 Implementation and unit testing: During this stage, the software design is 

realized as a set of programs or program units. Unit testing involves 

verifying that each unit meets its multiplication. 

 Integration and system testing: The individual program units or programs 

are integrated and tested as a complete system to ensure that the software 

requirements have been met. After testing, the software system isdelivered 

to the customer. 

 Operation and maintenance: longest phase, the system is installed and put 

into the practical use. Maintenance involves correcting errors which were 

not discovered in earlier stages of the life cycle, improves the 

implementation of system units and enhancing the system‘s services as new 

requirements are discovered. 

 
The main drawback of the waterfall model is the difficulty of accommodating change after 

the process is underway. In principle, a phase has to be complete before moving onto the 

next phase. 

 
Waterfall Model Problems 

 Inflexible partitioning of the project into distinct stages makes it difficult to respond to 

changing customer requirements. 

 Therefore, this model is only appropriate when the requirements are well- 

understood and changes will be fairly limited during the design process. 

 Few business systems have stable requirements. 

 The waterfall model is mostly used for large systems engineering projects where a 

system is developed at several sites. 

 In those circumstances, the plan-driven nature of the waterfall model helps 

coordinate the work. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 20 

 

 

 

Incremental Development 

Incremental Development is based on the idea of developing an initial implementation, 

exposing this to user comment and evolving it through several versions until an adequate 

system has been developed. Specification, development and validation activities are 

interleaved rather than separate, with rapid feedback across activities. 

Each increment of the system incorporates some functionality that is needed by the 

customer. This means that the customer can evaluate the system at a relatively early stage 

in the development to see if it delivers what is required. If not, then only the current 

increment has to be changed, and new functionality defined for later increments. 
 

Incremental Development Benefits 

 The cost of accommodating changing customer requirements is reduced. 

 The amount of analysis and documentation that has to be redone is much less 

than is required with the waterfall model. 

 It is easier to get customer feedback on the development work that has been done. 

 Customers can comment on demonstrations of the software and see how much 

has been implemented. 

 More rapid delivery and deployment of useful software to the customer is possible. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 21 

 

 

 

 Customers are able to use and gain value from the software earlier than is possible with a 

waterfall process. 

Incremental Development Problems 

 The process is not visible. 

 Managers need regular deliverables to measure progress. If systems are 

developed quickly, it is not cost-effective to produce documents that reflect 

every version of the system. 

 System structure tends to degrade as new increments are added. 

 Unless time and money is spent on refactoring to improve the software, regular 

change tends to corrupt its structure. Incorporating further software changes 

becomes increasingly difficult and costly. 

Process Activities 

 Real software processes are inter-leaved sequences of technical, collaborative and 

managerial activities with the overall goal of specifying, designing, implementing and 

testing a software system. 

 The four basic process activities of Specification, Development, Validation and 

Evolution are organized differently in different development processes. In the waterfall 

model, they are organized in sequence, whereas in incremental development they are 

inter-leaved. 

1. Software Specification 

 The process of establishing and defining what services are required from 
the system and identifying the constraints on the system‘s operation and 
development. 

 Is a particularly critical stage of the software process as errors at this 

stage inevitably lead to later problems in system design and 
implementation. 

 RE process aims to produce an agreed requirements document that 
specifies a system satisfying stakeholder requirements. 

Requirements are presented at two levels: End users and customers need a high level statement 

of the requirements; system developers need a more detailed system specification 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 22 

 

 

 

 
 

 

Requirements engineering process 

 

 Feasibility study 

 Is it technically and financially feasible to build the system? 

 Developed within the existing budgetary constraints.(cost effective) 

 

 Requirements elicitation and analysis 

 What do the system stakeholders require or expect from the system? 

 Observations from existing systems, discussions with potential users, 

task analysis. 

 This may involve the development of one or more models and 

prototypes 

 Requirements specification 

 Is the activity of translating the information gathered during the analysis 

activity into a document. 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 23 

 

 

 

Two types of requirements 

 

  User requirements: are abstract statements of the system requirements 

for the customer and end user of the system. 

 System requirements are a more detailed description of the functionality 

to be provided. 

 Requirements validation 

 Checking the validity of the requirements(consistent/complete) 

 
2. Software Design and Implementation 

 The process of converting the system specification into an executable system. 

 Software design 

 Design a software structure that realises the specification; 

 Implementation 

 Translate this structure into an executable program; 

 The activities of design and implementation are closely related and may be inter-leaved. 

A General Model of the Design Process 
 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 24 

 

 

 

Software platform-the environment in which software will execute. 

Information about this platform is an essential input to the design process, as 

designers must decide how best to integrate it with the software‗s 

environment. 

The requirement specification is the description of the functionality the 

software must provide and its performance and dependability requirements. 

If the system is to process existing data, then the description of that data 

may be included in the platform specification. 

Otherwise, the data description must be an input to the design process so that 

the system data organization to be defined. 
Design Activities 

 Architectural design, where you identify the overall structure of the system, the 

principal components (sometimes called sub-systems or modules), their relationships 

and how they are distributed. 

 Interface design, where you define the interfaces between system components. This 

interface specification must be unambiguous 

 Component design, where you take each system component and design how it will 

operate. 

 Database design, where you design the system data structures and how these are to be 

represented in a database. The work depends on whether an existing database is to be 

reused or a new database is to be created. 

3. Software Validation 

 Verification and validation (V & V) is intended to show that a system conforms to its 

specification and meets the requirements of the system customer. 

 Involves checking processes such as inspections and reviews. 

 System testing involves executing the system with test cases that are derived from the 

specification of the real data to be processed by the system. 

 Testing is the most commonly used V & V activity. 

Stages of Testing 
 

 

3 stage process 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 25 

 

 

 

System components are tested (component defects are discovered early in the 

process) then the integrated system is tested, (interface problems are found when 

the system is integrated), finally the system is tested with the customer‘s data. 

Testing Stages 

 Development or component testing 

 Individual components are tested independently; 

 Components may be functions or objects or coherent groupings of these entities. 

 Test automation tools such as JUnit that can rerun component tests when new 

versions of the components are created, are commonly used. 

 System testing 

 Testing of the system as a whole. 

 Concerned with showing the system meets its functional and non-functional 

requirements, Testing of emergent properties is particularly important. 

 Acceptance testing(alpha testing) 

 This is the final stage in the testing process before the system is accepted for 

operational use. 

 The system is tested with data supplied by the system customer rather than with 

simulated test data .Testing with customer data to check that the system meets 

the customer‘s needs. 

Testing Phases in a Plan-Driven Software Process 
 



MANAGEMENT OF SOFTWARE SYSTEMS CST 309 

Department of Computer Science and Engineering, NCERC, Pampady Page 26 

 

 

 

Acceptance testing(alpha testing) 

Alpha Testing is a type of software testing performed to identify bugs before 

releasing the product to real users or to the public. Alpha Testing is one of 

the user acceptance testing. 

Custom systems are developed for a single client 

This alpha testing process continues until the system developer and the 

client agree that the delivered system is an acceptable implementation of 

requirements. 

Beta testing 

 When software is to be marketed as a software product, beta testing is used. 

 Beta Testing is performed by real users of the software application in a real 

environment. 

 This involves delivering a system to a number of potential users who agree 

to use that system. 

 They report problem to system developers. 

 This exposes the product to real use and detects errors that may not have 

been anticipated by the system builders. 

 After this feedback, the system is modified and released either for further 

beta testing or general sale. 

https://www.geeksforgeeks.org/?p=294134


Page 27 

 

 

 

 

  

Alpha Testing Beta Testing 

 

Alpha testing involves both the white box 

and black box testing. 

 

Beta testing commonly uses black box 

testing. 

 

Alpha testing is performed by testers who 

are usually internal employees of the 

organization. 

 
Beta testing is performed by clients who 

are not part of the organization. 

 

Alpha testing is performed at developer‘s 

site. 

 

Beta testing is performed at end-user of 

the product. 

 
Reliability and security testing are not 
checked in alpha testing. 

 
Reliability, security and robustness are 
checked during beta testing. 

 

 
Alpha testing ensures the quality of the 
product before forwarding to beta testing. 

 
Beta testing also concentrates on the 

quality of the product but collects users 

input on the product and ensures that the 

product is ready for real time users. 

 
Alpha testing requires a testing 

environment or a lab. 

 
Beta testing doesn‘t require a testing 

environment or lab. 

 

Alpha testing may require long execution 
cycle. 

 

Beta testing requires only a few weeks of 
execution. 

 

Developers can immediately address the 

critical issues or fixes in alpha testing. 

 
Most of the issues or feedback collected 

from beta testing will be implemented in 

future versions of the product. 



  

 

 

4. Software Evolution 

 Software is inherently flexible and can change. 

 As requirements change through changing business circumstances, the software that 

supports the business must also evolve and change. 

 Although there has been a demarcation between development and evolution 

(maintenance) this is increasingly irrelevant as fewer and fewer systems are completely 

new. 

Coping with change 

 Change is inevitable in all large software projects. 

 Business changes lead to new and changed system requirements 

 New technologies open up new possibilities for improving implementations 

 Changing platforms require application changes 

 Change leads to rework so the costs of change include both rework (e.g. re-analysing 

requirements) as well as the costs of implementing new functionality. 

Reducing the Costs of Rework 

 Change avoidance, where the software process includes activities that can anticipate 

possible changes before significant rework is required. 

 For example, a prototype system may be developed to show some key features 

of the system to customers. 

 Change tolerance, where the process is designed so that changes can be 

accommodated at relatively low cost. 

 This normally involves some form of incremental development. Proposed 

changes may be implemented in increments that have not yet been developed. 



  

 

 

If this is impossible, then only a single increment (a small part of the system) 

may have be altered to incorporate the change. 

Software Prototyping 

 A prototype is an initial version of a system used to demonstrate concepts and try out 

design options, and find out more about the problem and its possible solutions. 

 Where a version of the system or part of the system is developed quickly to check the 

customer requirements. 

 Rapid, iterative development of the prototype is essential, so that costs are controlled 

and system stakeholders can experiment with the prototype early in the software 

process. 

 A prototype can be used in: 

 The requirements engineering process can help with requirements elicitation 

and validation; 

 In design processes to explore particular software solutions options and develop a UI 

design; 

Benefits of Prototyping 

 Improved system usability. 

 A closer match to users‘ real needs. 

 Improved design quality. 

 Improved maintainability. 

 Reduced development effort. 



  

 

 

The Process of Prototype Development 
 

 

 The objectives of prototyping should be made explicit from the start of the process. 

This may develop a system to prototype the user interface, or to validate he functional 

requirements, to demonstrate the feasibility of the application to managers. The same 

prototype cannot meet all objcetives.so they misunderstand the functionality of the 

prototype development. - May be based on rapid prototyping languages or tools. 

 The second stage is to decide what to put into /leave out of the prototype system. To 

reduce prototyping costs and accelerate the delivery schedule, leave some functionality 

out of the prototype-May be some nonfunctional requirements. Focus on functional 

rather than non-functional requirements such as reliability and security 

 Prototype should focus on areas of the product that are not well-understood; 

 Error checking and recovery may not be included in the prototype; 

 Final stage is evaluation. 

 
Developers are pressured by managers to deliver Throw away prototypes, when there are 

delays in delivering the final version of the software. 

Throw-Away Prototypes 

 Prototypes should be discarded after development as they are not a good basis for a 

production system: 

 It may be impossible to tune the system to meet non-functional requirements; 

such as performance ,security ,robustness 



  

 

 

 Prototypes are normally undocumented; only design specification is prototype 

code. This is not good enough for long term maintenance. 

 The prototype structure is usually degraded through rapid change;the system 

will be difficult and expensive to maintain,. 

 The prototype probably will not meet normal organizational quality standards. 

Incremental Delivery 

 Rather than deliver the system as a single delivery, the development and delivery is 

broken down into increments with each increment delivering part of the required 
functionality. 

  In an incremental delivery process, customers define which of the services are most 
important. 

 User requirements are prioritised and the highest priority requirements are included in 

early increments. 

 Once the system increments have been identified, the requirements for the services to 

be delivered in the first increment are defined in detail and that increment is developed. 

During development, further requirements analysis for later increments can take place, 

but requirements changes for the current increment are not accepted. 

 Once an increment is completed and delivered, it is installed in the customer‘s normal 

working environment. They can experiment with the system, and this helps them clarify 
their requirements for later system increments. As new increments are completed, they 
are integrated with existing increments so that system functionality improves with each 

delivered increment. 
Incremental Delivery Advantages 

 Customer value can be delivered with each increment so system functionality is 

available earlier. 

 Early increments act as a prototype to help elicit requirements for later increments. 

 Lower risk of overall project failure. 

 The highest priority system services tend to receive the most testing. 



  

 

 

 

Incremental Delivery 

Incremental Delivery Problems 

 Most systems require a set of basic facilities that are used by different parts of the 

system. 

 As requirements are not defined in detail until an increment is to be 

implemented, it can be hard to identify common facilities that are needed by all 

increments. 

 The essence of iterative processes is that the specification is developed in conjunction 

with the software. 

 However, this conflicts with the procurement model of many organizations, 

where the complete system specification is part of the system development 

contract. 

Boehm’s spiral model 

 Process is represented as a spiral rather than as a sequence of activities with 

backtracking. 

 Each loop in the spiral represents a phase in the process. 

 No fixed phases such as specification or design - loops in the spiral are chosen 

depending on what is required. 

 Risks are explicitly assessed and resolved throughout the process. 



  

 

 

 

 

 
 

 

Each loop in the Spiral Model is split into 4 Sectors 

 Objective setting 

 Specific objectives for the phase are identified. Constraints on the process and 

the product are identified and a detailed management plan is drawn up. Project 

risks are identified. Alternative strategies may planned. 

 Risk assessment and reduction 

 Risks are assessed and activities put in place to reduce the key risks. 

 Development and validation 

 A development model for the system is chosen which can be any of the generic 

models. 

 Planning 

 The project is reviewed and the next phase of the spiral is planned. 

Spiral Model Usage 

 Spiral model has been very influential in helping people think about iteration in 

software processes and introducing the risk-driven approach to development. 

 In practice, however, the model is rarely used as published for practical software 

development. 



  

 

 

Agile Software Development 
 

Rapid software development became known as agile development or agile methods. Rapid 

development and delivery is now often the most important requirement for software 

systems 

 Businesses operate in a fast changing requirement and it is practically 

impossible to produce a set of stable software requirements 

 Software has to evolve quickly to reflect changing business needs. 

Agile development characteristics 

 Specification, design and implementation are inter-leaved, there is no detailed 

system specification, and design documentation is minimized or generated 

automatically by the programming environment used to implement the system. 

 System is developed as a series of versions with stakeholders involved in version 

evaluation. They may propose changes to the software and new requirements that 

should be implemented in a later version of the system. 

 Extensive tool support is used to support the development process. Tools that may 

be used include automated testing tools, tools to support configuration management, 

and system integration and tools to automate user interface production. User 

interfaces are often developed using an IDE and graphical toolset. 

Agile methods are incremental development methods in which the increments are small, 

and, typically, new releases of the system are created (frequent release)and made available 

to customers every two or three weeks. They involve customers in the development process 

to get rapid feedback on changing requirements. They minimize documentation by using 

informal communications rather than formal meetings with written documents. 

 
 In a plan-driven software development process, iteration occurs within activities, with 

formal documents used to communicate between stages of the process. For example, 

the requirements will evolve, and, ultimately, a requirements specification will be 

produced. This is then an input to the design and implementation process. 

 
 In an agile approach, iteration occurs across activities. Therefore, the requirements and 

the design are developed together rather than separately 



  

 

 
 

 
 

 

 Agile Methods 

 Dissatisfaction with the overheads involved in software design methods of the 1980s 

and 1990s led to the creation of agile methods. These methods: 

 Focus on the code rather than the design 

 Are based on an iterative approach to software development 

 Are intended to deliver working software quickly and evolve this quickly to 

meet changing requirements. 

 The aim of agile methods is to reduce overheads in the software process (e.g. by 

limiting documentation) and to be able to respond quickly to changing requirements 

without excessive rework. 

 

Principles of agile methods 

 



  

 

 We are uncovering better ways of developing software by doing it and helping others do it. 

Through this work we have come to value: 

 Individuals 

Working 

Customer 

and 

software 

interactions 

over 

over processes and tools 

comprehensive 

collaboration over contract 

documentation 

negotiation 

Responding to change over following a plan 

 That is, while there is value in the items on the right, we value the items on the left more. 

 

Agile Manifesto 

 

 

Agile Development Techniques 

XP: Figure illustrates the XP process an increment of the system that is being developed. 
 

 

 
XP Release cycle 

In XP, requirements are expressed as scenarios (called user stories), which are 

implemented directly as a series of tasks. Programmers work in pairs and develop tests for 

each task before writing the code. All tests must be successfully executed when new code 

is integrated into the system. There is a short time gap between releases of the system. 

Extreme programming was an agile practices that were summarized and reflect the 

principles of the agile manifesto: 

 
1. Incremental development is supported through small, frequent releases of the system. 

Requirements are based on simple customer stories or scenarios that are used as a basis for 

deciding what functionality should be included in a system increment. 



  

 

 

2. Customer involvement is supported through the continuous engagement of the customer 

in the development team. The customer representative takes part in the development and 

is responsible for defining acceptance tests for the system. 

3. People, not process, are supported through pair programming, collective ownership of 

the system code, and a sustainable development process that does not involve excessively 

long working hours. 

4. Change is embraced through regular system releases to customers, test-first 

development, refactoring to avoid code degeneration, and continuous integration of new 

functionality. 

5. Maintaining simplicity is supported by constant refactoring that improves code quality 

and by using simple designs that do not unnecessarily anticipate future changes to the 

system. 

XP programming practices 

Some important practices used in the agile development (XP) are 

User stories: 

 Software requirements always change. In Agile methods , requirements elicitation is 

integrated with development by the idea of ―user stories‖ where a user story is a 

scenario of use that might be experienced by a system user. 

 After the discussion of development team with customer, they develop a ―story card‖ 

that briefly describes a story that encapsulates the customer needs. The development 

team then aims to implement that scenario in a future release of the software. 

 User stories may be used in planning system iterations. Once the story cards have been 

developed, the development team breaks these down into tasks and estimates the effort 

and resources required for implementing each task. 

 This usually involves discussions with the customer to refine the requirements. The 

customer then prioritizes the stories for implementation, choosing those stories that can 

be used immediately to deliver useful business support. 

The intention is to identify useful functionality that can be implemented in about two 

weeks, when the next release of the system is made available to the customer. 

 If changes are required for a system that has already been delivered, new story cards 

are developed and again, the customer decides whether these changes should have 

priority over new functionality. 

 User stories can be helpful in getting users involved in suggesting requirements during 

an initial predevelopment requirements elicitation activity. 

Cons: 

 The principal problem with user stories is completeness. It is difficult to judge if 

enough user stories have been developed to cover all of the essential requirements 

of a system. 



  

 

 

 It is also difficult to judge if a single story gives a true picture of an activity. 

Experienced users are often so familiar with their work that they leave things out 

when describing it. 

 

 
 

Refactoring: 

 Changes will always have to be made to the code being developed. Refactoring means 

that the programming team look for possible improvements to the software and 

implements them immediately. 

 Refactoring improves the software structure and readability and avoids the structural 

deterioration that naturally occurs when software is changed. 



Page 39 

 

 

 

 

 

Test-first development: 

Extreme Programming developed a new approach to program testing to address the 

difficulties of testing without a specification. Testing is automated and is central to 

the development process, and development cannot proceed until all tests have been 

successfully executed. The key features of testing in XP are: 

1. test-first development: 

 Write test before write the code. 

 Writing tests implicitly defines both an interface and a 

specification of behaviour for the functionality being developed. 

 Problems of requirements and interface misunderstandings are reduced. 

 Test-first development requires there to be a clear relationship between 

system requirements and the code implementing the corresponding 

requirements. 

 In XP, this relationship is clear because the story cards representing the 

requirements are broken down into tasks and the tasks are the principal 

unit of implementation. 

 In test-first development, the task implementers have to thoroughly 

understand the specification so that they can write tests for the system. 

 This means that ambiguities and omissions in the specification have to 

be clarified before implementation begins. It also avoids the problem of 

―test- lag.‖ This may happen when the developer of the system works at a 

faster pace than the tester. 

2. Incremental test development from scenarios, 

 Develop each tasks, so that the development schedule can be maintained. 

3. User involvement in the test development and validation, and 

 The role of the customer in the testing process is to help develop 

acceptance tests for the stories that are to be implemented in the next 

release of the system. 

4. The use of automated testing frameworks. 

  Test automation is essential for test-first development. Tests are written 

as executable Components before the task is implemented. These testing 

components should be stand-alone, should simulate the submission of input 

to be tested, and should check that the result meets the output specification. 

  An automated test framework is a system that makes it easy to write 

executable tests and submit a set of tests for execution. JUnit is a widely 

used example of an automated testing framework for Java programs. 

 
Pair programming: 

The programming pair sits at the same computer to develop the software. However, 

the same pair do not always program together. Rather, pairs are created dynamically 

so that all team members work with each other during the development process. 
 

 

 

 

 



Page 40 

 

 

 

 

 

Pair programming has a number of advantages. 

1. It supports the idea of collective ownership and responsibility for the system. 

This reflects Weinberg‘s idea of egoless programming where the software is owned 

by the team as a whole and individuals are not held responsible for problems with the 

code. Instead, the team has collective responsibility for resolving these problems. 

2. It acts as an informal review process because each line of code is looked at by at 

least two people. 

3. It encourages refactoring to improve the software structure. 

 

Agile Project Management 

 The principal responsibility of software project managers is to manage the 

project so that the software is delivered on time and within the planned budget 

for the project. 

Scrum 

 The Scrum approach is a general agile method and focus is on managing 

iterative development rather than specific agile practices. 

 
The Scrum Process 

 

 

 

 

 
The Sprint Cycle 

 Each process iteration produces a product increment that could be delivered to 

customers. 

 The starting point for planning is the product backlog, which is the list of work 

to be done on the project. —the list of items such as product features, 

requirements, user stories and engineering improvement that have to be worked 

on by the Scrum team. 

 The product owner has a responsibility to ensure the level of specification is 

appropriate for the work to be done. 

 

 

 

 

 

 



Page 41 

 

 

 

 

 

 

 Each sprint cycle lasts a fixed length of time, which is usually between 2 and 4 

weeks. At the beginning of each cycle, the Product Owner prioritizes the items 

on the product backlog to define which are the most important items to be 

developed in that cycle. 

 Sprints are never extended to take account of unfinished work. Items are 

returned to the product backlog if these cannot be completed within the allocated 

time for the sprint. 

 The whole team is then involved in selecting which of the highest priority items 

they believe can be completed. They then estimate the time required to complete 

these items. To make these estimates, they use the velocity attained in previous 

sprints, that is, how much of the backlog could be covered in a single sprint. This 

leads to the creation of a sprint backlog—the work to be done during that sprint. 

 The team self-organizes to decide who will work on what, and the sprint begins. 

Teamwork in Scrum 

 The ‗Scrum master‘ is a facilitator who arranges daily meetings, tracks the 

backlog of work to be done, records decisions, measures progress against the 

backlog and communicates with customers and management outside of the team. 

 The whole team attends short daily meetings (scrum)where all team members 

share information, describe their progress since the last meeting, problems that 

have arisen and what is planned for the following day. 

 This means that everyone on the team knows what is going on and, if problems 

arise, can re-plan short-term work to cope with them, there is no top-down 

direction from the Scrum Master. 

  Everyone participates in this short-term planning; the daily interactions among 

Scrum teams may be coordinated using a Scrum board. This is an office 

whiteboard that includes information and post-it notes about the Sprint backlog, 

work done, unavailability of staff, and so on. This is a shared resource for the 

whole team, and anyone can change or move items on the board. It means that 

any team member can, at a glance, see what others are doing and what work 

remains to be done. 

 At the end of each sprint, there is a review meeting, which involves the whole 

team. This meeting has two purposes. First, it is a means of process 

improvement. The team reviews the way they have worked and reflects on how 

things could have been done better. Second, it provides input on the product and 

the product state for the product backlog review that precedes the next sprint. 

  



Page 42 

 

 

 

 

 

Scrum Benefits 

 The product is broken down into a set of manageable and understandable chunks. 

 Unstable requirements do not hold up progress. 

 The whole team have visibility of everything and consequently team 

communication is improved. 

 Customers see on-time delivery of increments and gain feedback on how the 

product works. 

 Trust between customers and developers is established and a positive culture is 

created in which everyone expects the project to succeed. 

 

For offshore development, the product owner is in a different country from the 

development team, which may also be distributed. Figure shows the requirements 

for Distributed Scrum 
 

 

Key Points 

 
 Agile methods are incremental development methods that focus on rapid 

development, frequent releases of the software, reducing process overheads and 

producing high- quality code. They involve the customer directly in the 

development process. 

 The decision on whether to use an agile or a plan-driven approach to 

development should depend on the type of software being developed, the 

capabilities of the development team and the culture of the company developing 

the system. 

  



Page 43 

 

 

 

 

 

 The Scrum method is an agile method that provides a project management 

framework. It is centred round a set of sprints, which are fixed time periods when 

a system increment is developed. 

 Scaling agile methods for large systems is difficult. Large systems need up-front 

design and some documentation. 

 

  



Page 44 

 

 

 

 

 

  

 

MODULE 2 

NOTES 

 

 

  

 
 



Page 45 

 

 

 

 

 

 

 MODULE 2  

 

 

Requirement Analysis and Design (8 hours)  

 

Functional and non-functional requirements, Requirements engineering processes, Requirements 

elicitation, Requirements validation, Requirements change, Traceability matrix, Developing use 

cases, Software Requirements Specification Template, Personas, Scenarios, User stories, Feature 

identification.  

Design concepts - Design within the context of software engineering, Design Process, Design 

concepts, Design Model.  

Architectural Design - Software Architecture, Architectural Styles, Architectural considerations, 

Architectural Design.  

Component level design - What is a component?, Designing Class-Based Components, Conducting 

Component level design, Component level design for web-apps.  

Template of a Design Document as per ―IEEE Std 1016-2009 IEEE Standard for Information 

Technology Systems Design Software Design Descriptions‖. Case study: The Arianne 5 launcher 

failure. 

 

 Requirements Engineering  

The process  of establishing the services that the customer requires from a system and the constraints 

under which it operates and is developed. The requirements themselves are the descriptions of the 

system services and constraints that are generated during the requirements engineering process. It 

may range from a high-level abstract statement of a service or of a system constraint to a detailed 

mathematical functional specification.  

 

Types of requirement  

 User requirements-  
Statements in natural language plus diagrams of the services the system provides and its 

operational constraints. Written for customers.  

 System requirements-  

A structured document setting out detailed descriptions of the system‘s functions, services and 

operational constraints. Defines what should be implemented so may be part of a contract 

between client and contractor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 46 

 

 

 

 

 

 

 

 

Readers of different types of requirements specification 

 

 
 

 

Functional and non-functional requirements  

 Functional requirements-  
Statements of services the system should provide, how the system should react to particular 

inputs and how the system should behave in particular situations.  

May state what the system should not do.  

 Non-functional requirements-  
Constraints on the services or functions offered by the system such as timing constraints, 

constraints on the development process, standards, etc.  

Often apply to the system as a whole rather than individual features or services.  

 Domain requirements  
`        Constraints on the system from the domain of operation  

 

 Functional requirements  

 Describe functionality or system services.  

 Depend on the type of software, expected users and the type of system where the software is 

used.  

 Functional user requirements may be high-level statements of what the system should do.  

 Functional system requirements should describe the system services in detail.  

 

 Non-functional requirements  

These define system properties and constraints e.g. reliability, response time and storage 

requirements. Constraints are I/O device capability, system representations, etc. Process 

requirements may also be specified mandating a particular IDE, programming language or 

development method. Non-functional requirements may be more critical than functional 

requirements. If these are not met, the system may be useless.  

 

 

 

 

 

 

 



Page 47 

 

 

 

 

 

Types of nonfunctional requirement 

 

 

 

 
 

 

Requirements which arise from factors which are external to the system development process 

e.g. interoperability requirements, legislative requirements etc. 

 Usability requirements 
 

The system should be easy to use by medical staff and should be organized in such a way that 

user errors are minimized. (Goal). Medical staff shall be able to use all the system functions 

after four hours of training. After this training, the average number of errors made by 

experienced users shall not exceed two per hour of system use. (Testable non-functional  

requirement). 

 

Metrics for specifying nonfunctional requirements 

Non-functional requirements may affect the overall architecture of a system rather than the 

individual components.  

 

 Non-functional classifications  

 Product requirements  
Requirements which specify that the delivered product must behave in a particular way  

e.g. execution speed, reliability, etc.  

 Organizational requirements  
Requirements which are a consequence of organizational policies and procedures e.g. 

process standards used, implementation requirements, etc.  

 

 

 

 

 

 

 

 

 



Page 48 

 

 

 

 

 

 

 External requirements  

Requirementswhicharisefromfactorswhichareexternaltothesystemdevelopmentprocesse.g. 

interoperability requirements, legislative requirements etc. 

 

 Usability requirements 

The system should be easy to use by medical staff and should be organized in such a way that 

user errors are minimized. (Goal). Medical staff shall be able to use all the system functions 

after four hours of training. After this training, the average number of errors made by 

experienced users shall not exceed two per hour of system use. (Testable  non-functional 

requirement). 

 

Metricsforspecifyingnonfunctionalrequirements 

 
 

Requirements engineering processes  

The processes used for Requirement Engineering vary widely depending on the application 

domain, the people involved and the organization developing the requirements. Requirement 

Engineering is an iterative activity in which these processes are interleaved. 

  



Page 49 

 

 

 

 

 

A spiral view of the requirements engineering process 

 

 
 

1. Requirements elicitation and analysis  

 

 Sometimes called requirements elicitation or requirements discovery.  

 Involves technical staff working with customers to find out about the application domain, the 

services that the system should provide and the system‘s operational constraints.  

 May involve end-users, managers, engineers involved in maintenance, domain experts, trade 

unions, etc. These are called stakeholders.  

 

Problems of requirements analysis  

 Stakeholders don‘t know what they really want.  

 Stakeholders express requirements in their own terms.  

 Different stakeholders may have conflicting requirements.  

 Organisational and political factors may influence the system requirements.  

 The requirements change during the analysis process. New stakeholders may emerge and the 

business environment may change.  

 

Requirements elicitation and analysis  

Software engineers work with a range of system stakeholders to find out about the application 

domain, the services that the system should provide, the required system performance, hardware 

constraints, other systems, etc.  

Stages include:  

 

 Requirements discovery and understanding: process of interacting with stake holders to 

discover their requirements. Domain requirements from stakeholders and documentation are 

also discovered.  

 

 

 

 

 

 

 



Page 50 

 

 

 

 

 

 Requirements classification and organization: this activity takes the unstructured collection 

of requirements, groups related requirements and organizes them into coherent clusters.  

 Requirements prioritization and negotiation: when multiple stakeholders are involved, 

requirements will conflict. This activity is concerned with prioritizing requirements and finding 

and resolving requirements conflicts through negotiation.  

 Requirements specification (documentation): requirements are documented and input into 

the next round of spiral.  

 

The requirements elicitation and analysis process 

 

 
 

Requirements discovery (elicitation techniques)  

The process of gathering information about the required and existing systems and distilling the user 

and system requirements from this information. Interaction is with system stakeholders from 

managers to external regulators. Systems normally have a range of stakeholders.  

 

 Interviewing  

Formal or informal interviews with stakeholders are part of most RE processes. Formal or 

informal interviews with stakeholders are part of most RE processes. Types of interview  

 Closed interviews : stakeholders answers based on pre-determined list of questions  

 Open interviews : in which there is no predefined agenda, where various issues are 

explored with stakeholders  

 

 Effective interviewing  

 

 Be open-minded, avoid pre-conceived ideas about the requirements and are willing to listen 

to stakeholders.  

 

 Prompt the interviewee to get discussions going using a springboard question, a 

requirements proposal, or by working together on a prototype system. 

  

 

 

 

 

 

 

 

 

 Scenarios  



Page 51 

 

 

 

 

 

Scenarios are real-life examples of how a system can be used. They should include  

 A description of the starting situation;  

 A description of the normal flow of events;  

 A description of what can go wrong;  

 Information about other concurrent activities;  

 A description of the state when the scenario finishes.  

 

  Ethnography  

 A social scientist spends a considerable time observing and analyzing how people 

actually work. People do not have to explain or articulate their work.  

 Social and organizational factors of importance may be observed.  

 Ethnographic studies have shown that work is usually richer and more complex than 

suggested by simple system models.  

 Requirements that are derived from cooperation and awareness of other people‘s 

activities.  

 Awareness of what other people are doing leads to changes in the ways in which we 

do things.  

 Ethnography is effective for understanding existing processes but cannot identify new 

features that should be added to a system.  

 Focused ethnography  

 Developed in a project studying the air traffic control process.  

 Combines ethnography with prototyping  

 Prototype development results in unanswered questions which focus the ethnographic 

analysis.  

 The problem with ethnography is that it studies existing practices which may have some 

historical basis which is no longer relevant.  

 

 

 Ethnography and prototyping for requirements analysis 

 

 
 

 

 

 

 

 



Page 52 

 

 

 

 

 

2. Requirements specification  

 The process of writing the user and system requirements in a requirements document.  

 User requirements have to be understandable by end-users and customers who do not have a 

technical background.  

 System requirements are more detailed requirements and may include more technical 

information.  

 The requirements may be part of a contract for the system development  

 It is therefore important that these are as complete as possible. Ways of writing a system 

requirements specification 

 
 

 

 Requirements and design  

In principle, requirements should state what the system should do and the design should 

describe how it does this.  

In practice, requirements and design are inseparable  

 A system architecture may be designed to structure the requirements;  

 The system may inter-operate with other systems that generate design requirements;  

 The use of a specific architecture to satisfy non-functional requirements may be a 

domain requirement.  

 This may be the consequence of a regulatory requirement.  

 

 

 

 

 

 

 

 

 

 



Page 53 

 

 

 

 

 

 Natural language specification  

 Requirements are written as natural language sentences supplemented by diagrams 

and tables.  

 Used for writing requirements because it is expressive, intuitive and universal. This 

means that the requirements can be understood by users and customers.  

 

 Guidelines for writing requirements  

 Invent a standard format and use it for all requirements.  

 Use language in a consistent way. Use shall for mandatory requirements, should for 

desirable requirements.  

 Use text highlighting to identify key parts of the requirement.  

 Avoid the use of computer jargon.  

 Include an explanation (rationale) of why a requirement is necessary.  

 

 Problems with natural language  

 Lack of clarity  

 Precision is difficult without making the document difficult to read.  

Requirements confusion  

 Functional and non-functional requirements tend to be mixed-up.  

Requirements amalgamation  

 Several different requirements may be expressed together.  

 

 Structured specifications  

 An approach to writing requirements where the freedom of the requirements writer is 

limited and requirements are written in a standard way.  

 This works well for some types of requirements e.g. requirements for embedded control 

system but is sometimes too rigid for writing business system requirements.  

 

 

 Form-based specifications  

 Definition of the function or entity.  

 Description of inputs and where they come from.  

 Description of outputs and where they go to.  

 Information about the information needed for the computation and other entities used.  

 Description of the action to be taken.  

 Pre and post conditions (if appropriate).  

 The side effects (if any) of the function.  

 

 

 

 

 

 

 

 



Page 54 

 

 

 

 

 

 Tabular specification  

 Used to supplement natural language.  

 Particularly useful when you have to define a number of possible alternative courses of 

action.  

 Use cases  

 Use-cases are a scenario based technique in the UML which identify the actors in an 

interaction and which describe the interaction itself.  

 A set of use cases should describe all possible interactions with the system.  

 

 

 

 

 

 Developing Use cases  

 A use case tells a stylized story about how an end user (playing one of a number of 

possible roles) interacts with the system under a specific c set of circumstances.  

 The story may be narrative text, an outline of tasks or interactions, a template-based 

description, or a diagrammatic representation.  

 A use case depicts the software or system from the end user‘s point of view.  

 The first step in writing a use case is to define the set of ―actors‖ that will be involved in 

the story.  

 Actors are the different people (or devices) that use the system or product within the 

context of the function and behavior that is to be described.  

 

 

 

 

 



Page 55 

 

 

 

 

 

 Actors represent the roles that people (or devices) play as the system operates.  

 An actor is anything that communicates with the system or product and that is external to 

the system itself.  

 Primary actors → interact to achieve required system function and derive the intended 

benefit from the system. They work directly and frequently with the software.  

 Secondary actors → support the system so that primary actors can do their work.  

 Once actors have been identified, use cases can be developed  

 

3. Requirements validation  

 Concerned with demonstrating that the requirements define the system that the customer 

really wants.  

 Requirements error costs are high so validation is very important.  

 Fixing a requirements error after delivery may cost up to 100 times the cost of fixing an 

implementation error.  

 

 Requirements checking  

 Validity. Does the system provide the functions which best support the customer‘s needs?  

 Consistency. Are there any requirements conflicts?  

 Completeness. Are all functions required by the customer included?  

 Realism. Can the requirements be implemented given available budget and technology  

 Verifiability. Can the requirements be checked?  

 

 Requirements validation techniques 

 

 Requirements reviews 

Systematic manual analysis of the requirements: requirements are analysed 

systematically by a team of reviewers who check for errors and 

inconsistencies. 

 

 Prototyping 

Using an executable model of the system to check requirements. 

 Test-case generation 

Developing tests for requirements to check testability 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 56 

 

 

 

 

Developing tests for requirements to check testability. 

 Software Requirements Document 

 The software requirements document is the official statement of what is required of 

the system developers. 

 Should include both a definition of user requirements and a specification of the 

system requirements. 

 It is NOT a design document. As far as possible, it should set of WHAT the system 

should do rather than HOW it should do it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 57 

 

 

 

 

 

 

 
 

Users of a requirements document 

 

 

 

 
 

 

 



Page 58 

 

 

 

 

 

Requirements Management 

 Requirements management is the process of managing changing requirements 

during the requirements engineering process and system development. 

 New requirements emerge as a system is being developed and after it has gone into 
use. 

 You need to keep track of individual requirements and maintain links between 

dependent requirements so that you can assess the impact of requirements changes. 

You need to establish a formal process for making change proposals and linking 

these to system requirements. 

 Changing requirements 
 The business and technical environment of the system always changes after 

installation. 

 The people who pay for a system and the users of that system are rarely the same 
people. 

 Large systems usually have a diverse user community, with many users having 

different requirements and priorities that may be conflicting or contradictory. 

 

 Requirements evolution 

 

 

 

 

 

Requirements management planning 

 

Establishes  the level of requirements management detail that is required. Requirements 

management decisions: 

 Requirements identification: Each requirement must be uniquely identified so that it can 

be cross-referenced with other requirements. 

 A change management process: This is the set of activities that assess the impact and 

cost of changes. I discuss this process in more detail in the following section. 

 Traceability policies: These policies define the relationships between each requirement 
and between the requirements and the system design that should be recorded. 

 Tool support: Tools that may be used range from specialist requirements management 
systems to spreadsheets and simple database systems. 

 

 

  



Page 59 

 

 

 

 

 

Requirements change management 

Deciding if a requirements change should be ccepted  

Problem analysis and change specification 

 During this stage, the problem or the change proposal is analyzed to check that it is valid. 

This analysis is fed back to the change requestor who may respond with a more specific 
requirements change proposal, or decide to withdraw the request. 

Change analysis and costing 

 The effect of the proposed change is assessed using traceability information and general 

knowledge of the system requirements. Once this analysis is completed, a decision is 
made whether or not to proceed with the requirements change. 

Change implementation 

 The requirements document and, where necessary, the system design and 
implementation, are modified. Ideally, the document should be organized so that 
changes can be easily implemented 

 

 

 

Traceability Matrix 

 Is an Engg team that refers to documented links between Software Engg work 
products (Eg Requirements and test cases) 

 Traceability matrix allows a requirement engineer to represent the relationship 

between requirements and other work products. 

 Rows of the matrix are labelled using requirement names and columns can be 
labelled with the name of Software Engg work product. 

 A matrix cell is marked to indicate the presence of link between the two. 

 A table type document that is used in the development of software application to 
trace requirements. 

  It can be used for both forward (from Requirements to Design or Coding) and 

backward (from Coding to Requirements) tracing. 

  It is also known as Requirement Traceability Matrix (RTM) or Cross Reference 

Matrix (CRM). 

  It is prepared before the test execution process to ensure that every requirement is 
covered in the form of a Test case so that we don't miss out any testing. 

 Map all the requirements and corresponding test cases to ensure that we have written 
all the test cases for each condition. 

  



Page 60 

 

 

 

 

  

 This matrix can support a variety of Engg development activities. 

 They can provide continuity for developers as a project moves from one project 

phase to another. 

 It can be used to ensure the Engg work products have taken all requirements into 

account. 

 As the no: of req and the number of work products grows.it become increasingly 

difficult to keep the traceability up to date. 

  

 

 
  



Page 61 

 

 

 

 

 

The traceability matrix can be classified into three different types which are as follows: 

1. Forward traceability 

2. Backward or reverse traceability 

3. Bi-directional traceability 

 

 

 

Goals of Traceability Matrix: 

• It helps in tracing the documents that are developed during various phases of SDLC. 

• It ensures that the software completely meets the customer's requirements. 

• It helps in detecting the root cause of any bug. 

 Advantages of RTM: 
• With the help of the RTM document, we can display the complete test execution and bugs status 

based on requirements. 

• It is used to show the missing requirements or conflicts in documents. 

• We can ensure the complete test coverage, which means all the modules are tested. 

• It will also consider the efforts of the testing teamwork towards reworking or reconsidering on 

the test cases. 

 

  



Page 62 

 

 

 

 

•  

Personas, Scenarios and Stories ,Feature Identification 
 

 
 

From personas to features 

Fig: personas, scenarios, and user stories lead to features that might be 

implemented in a software product. 

PERSONAS 

 Personas are about ―imagined users,‖ character portraits of types of user that you think might 

adopt your product. 

 Ex: if your product is aimed at managing appointments fordentists, you might create a dentist 

persona, a receptionist persona, and a patient persona. 

 Personas of different types of users help to imagine what these users may want to do with 

your software and how they might use it. 

 They also help you envisage difficulties that users might have in understanding and using 

product features. 

 There is no standard way to represent personas  

 

Persona should include the following: 

 Description about the users‘ backgrounds 

 Description about why the users might want to use your product 

 Description about their education and technical skills. 

 Personas should be relatively short and easy to read. 

 Personas are a tool that allows team members to ―step into the users‘ shoes.‖ Instead of 

thinking about what they would do in a particular situation, they can imagine how a persona 

would behave and react. 

 They can help you check your ideas to ensure that you are not including product features 

that aren‘t really needed. 

 They help you to avoid making unwarranted assumptions, based on your own knowledge, 

and designing an overcomplicated or irrelevant product. 

 Personas, scenarios and user stories lead to features that might be implemented in a software 

product. 

 



Page 63 

 

 

 

 

 

 

 

 

 

 

 

SCENARIO  
   Scenario is a narration that describes a situation in which a user is using your product‘s features to    

   do something that they want to do. 

 Scenarios are used in the design of requirements and system features, in system testing, and 

in user interface design. 

 It should briefly explain the user‘s problem and present an imagined way that the problem 

might be solved. 

 Scenarios are high level stories of system use. 

 They should describe a sequence of interactions with the system but should not include 

details of these interactions. 

 They, are the basics for both use cases, which are extensively used in object oriented 

methods, and user stories, which are used in agile methods. 

 Like personas, they help developers to gain a shared understanding of the system that they 

are creating. 

 Scenarios are not specifications. They lack detail, they may be incomplete, and they may 

not represent all types of user interactions. 

 

 

 

 

 

 

 

 

 



Page 64 

 

 

 

 

 

 

 
 

Structured scenarios should include different fields such as: 

 what the user sees at the beginning of a scenario, 

 a description of the normal flow of events, 

 a description of what might go wrong, and so on. 

At the early stages of product design, the scenarios be narrative rather than structured. 

Writing scenarios 

 Start with the personas that you have created. 

 Tryto imagine several scenarios for each persona. 

 Not necessary to include every details you think users might do with your product. 

 Scenarios should always be written from the user‘s perspective and should be based on 

identified personas or real users. 

 Scenario writing is not a systematic process and different teams approach it in different ways. 

 Writing scenarios always gives you ideas for the features that you can include in the system. 

User Stories 

 These are finer-grain narratives that set out in a more detailed and structured way a single 

thing that a user wants from a software system. 

 User stories are not intended for planning but for helping with feature identification. 

 Aim to develop stories that are helpful in one of 2 ways: 

 as a way of extending and adding detail to a scenario; 

 as part of the description of the system feature that you have identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 65 

 

 

 

 

 

 

Feature Identification 
 A feature is a way of allowing users to access and use your product‘s functionality so that 

the feature list defines the overall functionality ofthe system. 

 Feature is a fragment of functionality that implements some user or system need. We can 

access features through user interface of a product. 

 Feature is something that the user needs or wants. 

 

Identify the product features that are independent, coherent and relevant: 

• Independence →A   feature should  not   depend on   how   other system features 

implemented and should not be affected by the order of activation of other features. 

• Coherence Features →should be linked toa single item of functionality. They 

should not do more than one thing, and they should never have side effects. 

• Relevance System features→shouldreflectthe way users normally carry out 

some task. They should not offer obscure functionality that is rarely required. 

 
 

 

 

 

 

 

 

 



Page 66 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



Page 67 

 

 

 

 

 

 

 

 

 
 

One problem that product developers should be aware of and try to avoid is “feature creep.” 

• Feature creep the number of features in a product creeps potential uses of the product 

are envisaged. 

• It adds to the complexity of a product, which means that you are likely to introduce bugs 

and security vulnerabilities into the software. 

• It also usually makes the user interface more complex. 

 Feature creep happens for 3 reasons: 

• Feature creep happens for 3 reasons: 

• Product managers and marketing executives discuss the functionality they need with a 

range of different product users. Different users have slightly different needs or may do 

the same thing but in slightly different ways. 

• Competitive products are introduced with slightly different functionality to your 

product. There is marketing pressure to include comparable functionality so that market 

share is not lost to these competitors. Thiscan lead to ―feature wars,‖ where competing 

products become more and more bloated as they replicate the features of their 

competitors. 

• The product tries to support both experienced and inexperienced users. Easy ways of 

implementing common actions are added for inexperienced users and the more complex 

features to accomplish the same thing are retained because experienced users prefer to 

work that way. 

• To avoid feature creep, the product manager and the development team should review 

all feature proposals and compare new proposals to features that have already been 

accepted for implementation. 



Page 68 

 

 

 

 

 
Feature identification should be a team activity, and as features are 

identified, the team should discuss them and generate ideas about related 

features. 

• Collaborative writing 

• Blogs and web pages 

Feature List 

The output of the feature identification process should be a list of features that you use for 

designing and implementing your product. 

• Add detail when you are implementing the feature. 

 

• You can describe a feature from one or more user stories. 

 

• Scenarios and user stories should always be your starting point for 

identifying product features. 

  



Page 69 

 

 

 

 

 

Design concepts - Design within the context of software engineering, Design Process, 

Design concepts, Design Model. 

Software design encompasses the set of principles, concepts, and practices that lead to the 

development of a high-quality system or product. It is the place where creativity rules—where 

stakeholder requirements, business needs, and technical considerations all come together in the 

formulation of a product or system. Design creates a representation or model of the software, the 

design model provides detail about software architecture, data structures, interfaces, and 

components that are necessary to implement the system. 

 

 DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING 

 

 

Software design sits at the technical kernel of software engineering. Beginning once software 

requirements have been analyzed and modeled, software design is the last translating the 

requirements model into the design model. 

 

 

Each of the elements of the requirements model provides information that is necessary to create 

the four design models required for a complete specification of design. The flow of information 

during software design is illustrated. The requirements model, manifested by scenario-based, class- 

based, and behavioral elements, feed the design task. 



Page 70 

 

 

 

 

The data/class design transforms class models into design class realizations and the requisite data 

structures required to implement the software. The objects and provide the basis for the data design 

activity. 

The architectural design defines the relationship between major structural elements of the 

software, the architectural styles and patterns. The architectural design representation—the 

framework of a computer-based system—is derived from the requirements model. 

The interface design describes how the software communicates with systems that interoperate 

with it, and with humans who use it. An interface implies a flow of information (e.g., data and/or 

control) and a specific type of behavior. Therefore, usage scenarios and behavioral models provide 

much of the information required for interface design. 

The component-level design transforms structural elements of the software architecture into a 

procedural description of software components. Information obtained from the class-based models 

and behavioral models serve as the basis for component design. 

The importance of software design can be stated with a single word— quality. Design is the only 

way that you can accurately translate stakeholder‘s requirements into a finished software product 

or system. Software design serves as the foundation for all the software engineering and software 

support activities that follow. 

 

THE DESIGN PROCESS 

 

Software design is an iterative process through which requirements are translated into a ―blueprint‖ 

for constructing the software. Initially, the blueprint depicts a holistic view of software. 

Quality  Guidelines. 

Consider the following guidelines: 

1. A design should exhibit an architecture that (1) has been created using recognizable 

architectural styles or patterns, (2) is composed of components that exhibit good design 

characteristics (these are discussed later in this chapter), and (3) can be implemented in an 

evolutionary fashion, thereby facilitating implementation and testing. 

2. A design should be modular; that is, the software should be logically partitioned into 
elements or subsystems. 

3. A design should contain distinct representations of data, architecture, interfaces, and 
components. 

4. A design should lead to data structures that are appropriate for the classes to be 

implemented and are drawn from recognizable data patterns. 

5. A design should lead to components that exhibit independent functional characteristics. 

6. A design should lead to interfaces that reduce the complexity of connections between 

components and with the external environment. 

7. A design should be derived using a repeatable method that is driven by information 

obtained during software requirements analysis. 

8. A design should be represented using a notation that effectively communicates its meaning. 

  



Page 71 

 

 

 

 

 

Assessing Design Quality—the Technical Review 

During design, quality is assessed by conducting a series of technical reviews (TRs). A technical 

review is a meeting conducted by members of the software team. Usually two, three, or four people 

participate depending on the scope of the design information to be reviewed. 

 

Quality Attributes. The FURPS quality attributes represent a target for all software design: 

 Functionality is assessed by evaluating the feature set and capabilities of the program, the 

generality of the functions that are delivered, and the security of the overall system. 

 Usability is assessed by considering human factors,overall aesthetics, consistency, and 

documentation. 

 Reliability is evaluated by measuring the frequency and severity of failure, the accuracy of 

output results, the mean-time-to-failure (MTTF), the ability to recover from failure, and the 

predictability of the program. 

 Performance is measured using processing speed, response time, resource consumption, 

throughput, and efficiency. 

 Supportability combines extensibility, adaptability, and serviceability. These three 

attributes represent a more common term, maintainability —and in addition, testability, 

compatibility, configurability (the ability to organize and control elements of the software 

configuration),the ease with which a system can be installed, and the ease with which 

problems can be localized. 

Common characteristics: 

(1) A mechanism for the translation of the requirements model into a design representation, 

(2) A notation for representing functional components and their interfaces, 

(3) Heuristics for refinement and partitioning 

(4) Guidelines for quality assessment. 

 

DESIGN CONCEPTS 
 

Abstraction 

 At the highest level of abstraction, a solution is stated in broad terms using the language of 

the problem environment. 

 At lower levels of abstraction, a more detailed description of the solution is provided. 

 A procedural abstraction refers to a sequence of instructions that have a specific and 

limited function. The name of a procedural abstraction implies these functions, but specific 

details are suppressed. 

An example of a procedural abstraction would be the word open for a door. Open 

implies a long sequence of procedural steps (e.g., walk to the door, reach out and grasp 

knob, turn knob and pull door, step away from moving door, etc.). 

  



Page 72 

 

 

 

 

 

  A data abstractionis a named collection of data that describes a data object. In the context 

of the procedural abstraction open, we can define a data abstraction called door. Like any 

data object, the data abstraction for door would encompass a set of attributes that describe 

the door (e.g., door type, swing direction, opening mechanism, weight, dimensions). 

Architecture 
Software architecture alludes to ―the overall structure of the software and the ways in which that 

structure provides conceptual integrity for a system‖. Architecture is the structure or organization 

of program components (modules), the manner in which these components interact, and the 

structure of data that are used by the components. A set of architectural patterns enables a software 

engineer to reuse design-level concepts. 

Shaw and Garlan describe a set of properties that should be specified as part of an architectural 

design 

Structural properties define ―the components of a system (e.g., modules, objects, filters) and the 

manner in which those components are packaged and interact with one another.‖. 

 Extra-functional properties address “how the design architecture achieves requirements 

for performance, capacity, reliability, security, adaptability, and other system 

characteristics. 

 Families of related systems “draw upon repeatable patterns that are commonly encountered 

in the design of families of similar systems.‖ 

Given the specification of these properties, the architectural design can be represented using one 

or more of a number of different models. 

 Structural models represent architecture as an organized collection of program 

components. 

 Framework models increase the level of design abstraction by attempting to identify 

repeatable architectural design frameworks (patterns) that are encountered in similar types 

of applications. 

 Dynamic models address the behavioral aspects of the program architecture, indicating 

how the structure or system configuration may change as a function of external events. 

 Process models focus on the design of the business or technical process that the system 

must accommodate. 

 Functional models can be used to represent the functional hierarchy of a system. 

 

Patterns 

 “A pattern is a named nugget of insight which conveys the essence of a proven solution to 

a recurring problem within a certain context amidst competing concerns‖. 

 A design pattern describes a design structure that solves a particular design problem within 

a specific context and amid ―forces‖ that may have an impact on the manner in which the 

pattern is applied and used. 

 The intent of each design pattern is to provide a description that enables a designer to 

determine 

  



Page 73 

 

 

 

 

  

(1) Whether the pattern is applicable to the current work, 

(2) Whether the pattern can be reused (hence, saving design time), and 

(3) Whether the pattern can serve as a guide for developing a similar, but functionally or 

structurally different pattern. 

 

Separation of Concerns 
 

Separation of concerns is a design concept that suggests that any complex problem can be more 

easily handled if it is subdivided into pieces that can each be solved and/or optimized 

independently. 

A concern is a feature or behavior that is specified as part of the requirements model for the 

software. By separating concerns into smaller, and therefore more manageable pieces, a problem 

takes less effort and time to solve. 

 

Modularity 

 Modularity is the most common manifestation of separation of concerns. Software is 

divided into separately named and addressable components, sometimes called modules that 

are integrated to satisfy problem requirements. 

 ―Modularity is the single attribute of software that allows a program to be intellectually 

manageable‖. 

 

Monolithic software (i.e., a large program composed of a single module) cannot be easily grasped by 

a software engineer. The number of control paths, span of reference, number of variables, and overall 

complexity would make understanding close to impossible. In the Figure, the effort (cost) to develop 

an individual software module does decrease as the total number of modules increases. 

  

 

 
 

 

 

 

 

 

 

 

 



Page 74 

 

 

 

 

 

Given the same set of requirements, more modules means smaller individual size. 

However, as the number of modules grows, the effort (cost) associated with integrating the 

modules also grows. These characteristics lead to a total cost or effort curve shown inthe 

figure. There is a number, M, of modules that would result in minimum development cost, 

but we do not have the necessary sophistication to predict M with assurance. 

Information Hiding 

 The principle of information hiding suggests that modules be ―characterized by design 

decisions that (each) hides from all others.‖ 

 Hiding implies that effective modularity can be achieved by defining a set of independent 

modules that communicate with one another only that information necessary to achieve 

software function. 

Functional Independence 

 Functional independence is achieved by developing modules with ―single minded‖ function 

and an ―aversion‖ to excessive interaction with other modules. 

 Functional independence is a key to good design, and design is the key to software quality. 

 Independence is assessed using two qualitative criteria: cohesion and coupling. Cohesion 

is an indication of the relative functional strength of a module. Coupling is an indication of 

the relative interdependence among modules. 

 A cohesive module performs a single task, requiring little interaction with other 

components in other parts of a program 

 Coupling is an indication of interconnection among modules in a software structure. 

  Coupling depends on the interface complexity between modules, the point at which entry 

or reference is made to a module, and what data pass across the interface. 

 High cohesion and low coupling make the module to be effectively design. 

Refinement 

 Stepwise refinement is a top-down design strategy. 

 An application is developed by successively refining levels of procedural detail. 

Aspects 

An aspect is implemented as a separate module (component) rather than as software fragments that 

are ―scattered‖ or ―tangled‖ throughout many components. 

Refactoring 

 Refactoring is a reorganization technique that simplifies the design (or code) of a 

component without changing its function or behavior. 

 ―Refactoring is the process of changing a software system in such a way that it does not 

alter the external behavior of the code [design] yet improves its internal structure.‖ 

 When software is refactored, the existing design is examined for redundancy, unused design 

elements, inefficient or unnecessary algorithms, poorly constructed or in appropriate data 

structures, or any other design failure that can be corrected to yield a better design. 

  



Page 75 

 

 

 

 

 

Object-Oriented Design Concepts 

The object-oriented (OO) paradigm is widely used in modern software engineering. OO design 

concepts such as classes and objects, inheritance, messages, and polymorphism 

Design Classes 

The analysis model defines a set of analysis classes . Five different types of design classes, each 

representing a different layer of the design architecture, can be developed 

 User interface classes define all abstractions that are necessary for human-computer 

interaction (HCI) and often implement the HCI in the context of a metaphor. 

 Business domain classes identify the attributes and services (methods) that are required to 

implement some element of the business domain that was defined by one or more analysis 

classes. 

 Process classes implement lower-level business abstractions required to fully manage the 

business domain classes. 

 Persistent classes represent data stores (e.g., a database) that will persist beyond the 

execution of the software. 

 System classes implement software management and control functions that enable the 

system to operate and communicate within its computing environment and with the outside 

world. 

High  cohesion. A cohesive design class has a small, focused set of responsibilities and single- 

mindedly applies attributes and methods to implement those responsibilities. 

Low coupling. Within the design model, it is necessary for design classes to collaborate with one 

another. However, collaboration should be kept to an acceptable minimum. If a design model is 

highly coupled (all design classes collaborate with all other design classes), the system is difficult 

to implement, to test, and to maintain over time. In general, design classes within a subsystem 

 

A hierarchy is developed by decomposing a macroscopic statement of function (a procedural 

abstraction) in a stepwise fashion until programming language statements are reached. 

 Refinement is actually a process of elaboration. You begin with a statement of function 

(or description of information) that is defined at a high level of abstraction. 

 Abstraction and refinement are complementary concepts. 

 Abstraction enables you to specify procedure and data internally but suppress the need for 

―outsiders‖ to have knowledge of low-level details. 

 Refinement helps you to reveal low-level details as design progresses. 

Both concepts allow you to create a complete design model as the design evolves. 

should have only limited knowledge of other classes. This restriction, called the Law of Demeter 

suggests that a method should only send messages to methods in neighboring classes. 

 

 

 

 

 

 

 

 

 



Page 76 

 

 

 

 

 

 
Design class for Floor Plan and composite aggregation for the class 

Dependency Inversion 

Dependency inversion principle which states: High-level modules(classes) should not depend 

[directly] upon low-level modules. Both should depend on abstractions. Abstractions should not 

depend on details. Details should depend on abstractions. 

Design for Test 

There is an ongoing debate about whether software design or test case design should come first. 

Test-driven development (TDD) write tests before implementing any other code. They take to heart 

Tom Peters‘ credo, ―Test fast, fail fast, and adjust fast.‖ Testing guides their design as they 

implement in short, rapid-fi re ―write test code—fail the test—write enough code to pass—then 

pass the test‖ cycles. 

THE DESIGN MODEL 
 

 The design model can be viewed in two different dimensions. 

 The process dimension indicates the evolution of the design model as design tasks are 

executed as part of the software process. 

 The abstraction dimension represents the level of detail as each element of the analysis 

model is transformed into a design equivalent and then refined iteratively. The dashed line 

indicates the boundary between the analysis and design models. 

 However, that model elements indicated along the horizontal axis are not always developed 

in a sequential fashion. In most cases preliminary architectural design sets the stage and is 

followed by interface design and component-level design, which often occur in parallel. 

The deployment model is usually delayed until the design has been fully developed. 

 

 

 

 

 

 



Page 77 

 

 

 

 

 

 

 
 

1 . Data Design Elements 

 Data design (sometimes referred to as data architecting) creates a model of data and/or 

information that is represented at a high level of abstraction (the customer/user‘s view of 

data). This data model is then refined into progressively more implementation-specific 

representations that can be processed by the computer-based system. 

 The structure of data has always been an important part of software design. At the program- 

component level, the design of data structures and the associated algorithms required to 

manipulate them is essential to the creation of high-quality applications. 

 At the application level, the translation of a data model (derived as part of requirements 

engineering) into a database is pivotal to achieving the business objectives of a system. 

 At the business level, the collection of information stored in disparate databases and 

reorganized into a ―data warehouse‖ enables data mining or knowledge discovery that can 

have an impact on the success of the business itself. 

  



Page 78 

 

 

 

 

 

2. Architectural Design Elements 
 

The architectural design for software is the equivalent to the floor plan of a house. The floor plan 

depicts the overall layout of the rooms; their size, shape, and relationship to one another; and the 

doors and windows that allow movement into and out of the rooms. The floor plan gives us an 

overall view of the house. Architectural design elements give us an overall view of the software. 

The architectural model is derived from three sources: (1) information about the application 

domain for the software to be built; (2) specific requirements model elements such as use cases or 

analysis classes, their relationships and collaborations  for the problem at  hand; and (3) the 

availability of architectural styles and patterns. 

 

Interface Design Elements 

 The interface design for software is analogous to a set of detailed drawings (and 

specifications) for the doors, windows, and external utilities of a house. In essence, the 

detailed drawings (and specifications) for the doors, windows, and external utilities tell us 

how things and information flow into and out of the house and within the rooms that are 

part of the floor plan. 

  The interface design elements for software depict information flows into and out of a 

system and how it is communicated among the components defined as part of the 

architecture. 

 There are three important elements of interface design: (1) the user interface (UI), (2) 

external interfaces to other systems, devices, networks, or other producers or consumers of 

information, and (3) internal interfaces between various design components. These 

interface design elements allow the software to communicate externally and enable internal 

communication and collaboration among the components that populate the software 

architecture. 

 
Interface requirement for Control Panel 

 

 

 

 

 

 

 



Page 79 

 

 

 

 

 

2. Component-Level Design Elements 

 The component-level design for software is the equivalent to a set of detailed drawings (and 

specifications) for each room in a house. These drawings depict wiring and plumbing within 

each room, the location of electrical receptacles and wall switches, faucets, sinks, showers, 

tubs, drains, cabinets, and closets, and every other detail associated with a room. 

 The component-level design for software fully describes the internal detail of each software 

component. To accomplish this, the component-level design defines data structures for all 

local data objects and algorithmic detail for all processing that occurs within a component 

and an interface that allows access to all component operations (behaviors). 

 

 

A UML component diagram 

3. Deployment-Level Design Elements 
 Deployment-level design elements indicate how software functionality and subsystems will 

be allocated within the physical computing environment that will support the software. 

 For example, the elements of the SafeHome product are configured to operate within three 

primary computing environments—a homebasedPC, the SafeHome control panel, and a 

server housed at CPI Corp. (providing Internet-based access to the system). In addition, 

limited functionality may be provided with mobile platforms. 

 During design, a UML deployment diagram is developed and then refined as shown in 

Figure. In the figure, three computing environments are shown (in actuality, there would 

be more including sensors, cameras, and functionality delivered by mobile platforms). The 

subsystems (functionality) housed within each computing element are indicated. For 

example, the personal computer houses subsystems that implement security, surveillance, 

home management, and communications features. 

  In addition, an external access subsystem has been designed to manage all attempts to 

access the SafeHome system from an external source. Each subsystem would be elaborated 

to indicate the components that it implements. 

 The diagram shown in Figure is in descriptor form. This means that the deployment 

diagram shows the computing environment but does not explicitly indicate configuration 

details. For example, the ―personal computer‖ is not further identified. It could be a Mac, a 

Windows-based PC, a Linux-box or a mobile platform with its associated operating system. 

These details are provided when the deployment diagram is revisited in instance form 

during the latter stages of design or as construction begins. Each instance of the deployment 

(a specific named hardware configuration) is identified. 

 

 

 

 

 

 



Page 80 

 

 

 

 

 

 

 
 

A UML deployment diagram 

 

ARCHITECTURAL DESIGN 
 

Architectural Design - Software Architecture, Architectural Styles, Architectural 

considerations, Architectural Design 

 

Architectural design represents the structure of data and program components that are required to 

build a computer-based system. It considers the architectural style that the system will take, the 

structure and properties of the components that constitute the system, and the interrelationships 

that occur among all architectural components of a system. 

An architecture model encompassing data architecture and program structure is created during 

architectural design. 

 

SOFTWARE ARCHITECTURE 

The software architecture of a program or computing system is the structure or structures of the 

system, which comprise software components, the externally visible properties of those 

components, and the relationships among them. 

 

Identify three key reasons that software architecture is important: 

 Software architecture provides a representation that facilitates communication among 

all stakeholders. 

 The architecture highlights early design decisions that will have a profound impact on all 

software engineering work that follows. 

 Architecture ―constitutes a relatively small, intellectually graspable model of how the 

system is structured and how its components work together‖ 

  



Page 81 

 

 

 

 

 

ARCHITECTURAL STYLES 

 

An architectural style is a transformation that is imposed on the design of an entire system. The 

intent is to establish a structure for all components of the system. In the case where an existing 

architecture is to be reengineered, the imposition of an architectural style will result in fundamental 

changes to the structure of the software including a reassignment of the functionality of 

components. 

Different Architectural Styles 

 Data-Centered Architecture: A data store (e.g., a file or database) resides at the 

center of this architecture and is accessed frequently by other components that update, 

add, delete, or otherwise modify data within the store. Figure illustrates a typical data- 

centered style. Client software accesses a central repository. In some cases the data 

repository is passive. That is, client software accesses the data independent of any 

changes to the data or the actions of other client software. A variation on this approach 

transforms the repository into a ―blackboard‖ that sends notifications to client software 

when data of interest to the client changes. 

Data-centered architectures promote integrability. That is, existing components can be changed 

and new client components added to the architecture without concern about other clients (because 

the client components operate independently). In addition, data can be passed among clients using 

the blackboard mechanism (i.e., the blackboard component serves to coordinate the transfer of 

information between clients). Client components independently execute processes. 

 

 

 Data-Flow Architectures: This architecture is applied when input data are to be 

transformed through a series of computational or manipulative components into output 

data. A pipe-and-filter pattern has a set of components, called filters, connected by 

pipes that transmit data from one component to the next. Each filter works 

independently of those components upstream and downstream, is designed to expect 

data input of a certain form, and produces data output (to the next filter) of a specified 

form. However, the filter does not require knowledge of the workings of its 

neighboring filters. 

  



Page 82 

 

 

 

 

 

If the data flow degenerates into a single line of transforms, it is termed batch sequential. This 

structure accepts a batch of data and then applies a series of sequential components (filters) to 

transform it. 

 

 
 

 Call and Return Architectures: This architectural style enables to achieve a program 

structure that is relatively easy to modify and scale. A number of sub styles exist within 

this category: 

 Main program/subprogram architectures. This classic program structure 

decomposes function into a control hierarchy where a ―main‖ program invokes 

a number of program components, which in turn may invoke still other 

components. Figure above illustrates an architecture of this type. 

 Remote procedure call architectures. The components of a main program/ 

subprogram architecture are distributed across multiple computers on a 

network. 

 

 
  



Page 83 

 

 

 

 

 

 

 Object-Oriented Architectures: The components of a system encapsulate data and 

the operations that must be applied to manipulate the data. Communication and 

coordination between components are accomplished via message passing. 

 

Layered Architectures: 

 

 The basic structure of a layered architecture is illustrated. A number of different 

layers are defined, each accomplishing operations that progressively become 

closer to the machine instruction set. 

 At the outer layer, components service user interface operations. 

 At the inner layer, components perform operating system interfacing. 

Intermediate layers provide utility services and application software functions. 

  Once requirements engineering uncovers the characteristics and constraints of 

the system to be built, the architectural style and/or combination of patterns that 

best fits those characteristics and constraints can be chosen. In many cases, 

more than one pattern might be appropriate and alternative architectural styles 

can be designed and evaluated. For example, a layered style (appropriate for 

most systems) can be combined with a data-centered architecture in many 

database applications. 

  

ARCHITECTURAL CONSIDERATIONS 
 

Buschmann and Henny suggest several architectural considerations that can provide software 

engineers with guidance as architecture decisions are made: 

 Economy —many software architectures suffer from unnecessary complexity driven by 

the inclusion of unnecessary features or nonfunctional requirements (e.g., reusability when 

it serves no purpose). The best software is uncluttered and relies on abstraction to reduce 

unnecessary detail. 

 Visibility —As the design model is created, architectural decisions and the reasons for them 

should be obvious to software engineers who examine the model at a later time. Poor 

visibility arises when important design and domain concepts are poorly communicated to 

those who must complete the design and implement the system. 

 Spacing— Separation of concerns in a design without introducing hidden dependencies is 

a desirable design concept that is sometimes referred to as spacing. Sufficient spacing leads 

to modular designs, but too much spacing leads to fragmentation and loss of visibility. 

 Symmetry —Architectural symmetry implies that a system is consistent and balanced in 

its attributes. Symmetric designs are easier to understand, comprehend, and communicate. 

As an example of architectural symmetry, consider a customer account object whose life 

cycle is modeled directly by a software architecture that requires both open () and close() 

methods. Architectural symmetry can be both structural and behavioral. 

  



Page 84 

 

 

 

 

 

 Emergence —Emergent, self-organized behavior and control are often the key to creating 

scalable, efficient, and economic software architectures. For example, many real-time 

software applications are event driven. The sequence and duration of the events that define 

the system‘s behavior is an emergent quality. It is very difficult to plan for every possible 

sequence of events. Instead the system architect should create a flexible system that 

accommodates this emergent behavior. 

 

ARCHITECTURAL CONSIDERATIONS 

 

Buschmann and Henny suggest several architectural considerations that can provide software 

engineers with guidance as architecture decisions are made: 

 Economy —many software architectures suffer from unnecessary complexity driven by 

the inclusion of unnecessary features or nonfunctional requirements (e.g., reusability when 

it serves no purpose). The best software is uncluttered and relies on abstraction to reduce 

unnecessary detail. 

 Visibility —As the design model is created, architectural decisions and the reasons for them 

should be obvious to software engineers who examine the model at a later time. Poor 

visibility arises when important design and domain concepts are poorly communicated to 

those who must complete the design and implement the system. 

 Spacing— Separation of concerns in a design without introducing hidden dependencies is 

a desirable design concept that is sometimes referred to as spacing. Sufficient spacing leads 

to modular designs, but too much spacing leads to fragmentation and loss of visibility. 

 Symmetry —Architectural symmetry implies that a system is consistent and balanced in 

its attributes. Symmetric designs are easier to understand, comprehend, and communicate. 

As an example of architectural symmetry, consider a customer account object whose life 

cycle is modeled directly by a software architecture that requires both open () and close() 

methods. Architectural symmetry can be both structural and behavioral. 

 Emergence —Emergent, self-organized behavior and control are often the key to creating 

scalable, efficient, and economic software architectures. For example, many real-time 

software applications are event driven. The sequence and duration of the events that define 

the system‘s behavior is an emergent quality. It is very difficult to plan for every possible 

sequence of events. Instead the system architect should create a flexible system that 

accommodates this emergent behavior. 



Page 85 

 

 

 

 

  

ARCHITECTURAL DESIGN 
 

As architectural design begins, context must be established. To accomplish this, the external 

entities (e.g., other systems, devices, and people) that interact with the software and the nature of 

their interaction are described. This information can generally be acquired from the requirements 

model. Once context is modeled and all external software interfaces have been described to identify 

a set of architectural archetypes. 

An archetype is an abstraction (similar to a class) that represents one element of system behavior. 

The set of archetypes provides a collection of abstractions that must be modeled architecturally if 

the system is to be constructed, but the archetypes themselves do not provide enough 

implementation detail. Therefore, the designer specifies the structure of the system by defining and 

refining software components that implement each archetype. This process continues iteratively 

until a complete architectural structure has been derived. 

Representing the System in Context 
 

At the architectural design level, a software architect uses an architectural context diagram (ACD) 

to model the manner in which software interacts with entities external to its boundaries. The generic 

structure of the architectural context diagram is illustrated. 

 

 
 

Referring to the figure, systems that interoperate with the target system (the system for which an 

architectural design is to be developed) are represented as: 

 Superordinate systems —those systems that use the target system as part of some higher- 

level processing scheme. 

  Subordinate systems —those systems that are used by the target system and provide data 

or processing that are necessary to complete target system functionality. 

  



Page 86 

 

 

 

 

 

 Peer-level systems —those systems that interact on a peer-to-peer basis (i.e., information 

is either produced or consumed by the peers and the target system. 

  Actors —entities (people, devices) that interact with the target system by producing or 

consuming information that is necessary for requisite processing. 

Each of these external entities communicates with the target system through an interface (the small 

shaded rectangles). 

 

Defining Archetypes 
An archetype is a class or pattern that represents a core abstraction that is critical to the design of 

an  architecture for the target system. In general, a relatively small set of archetypes is required to 

design even relatively complex systems. The target system architecture is composed of these 

archetypes, which represent stable elements of the architecture but may be instantiated many 

different ways based on the behavior of the system. 

In many cases, archetypes can be derived by examining the analysis classes defined as part of the 

requirements model. Continuing the discussion of the Safe Home security function, you might 

define the following archetypes: 

 Node. Represents a cohesive collection of input and output elements of the home security 

function. For example, a node might be composed of (1) various sensors and (2) a variety 

of alarm (output) indicators. 

 Detector. An abstraction that encompasses all sensing equipment that feeds information 

into the target system. 

 Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, flashing lights, 

bell) for indicating that an alarm condition is occurring. 

 Controller. An abstraction that depicts the mechanism that allows the arming or disarming 

of a node. If controllers reside on a network, they have the ability to communicate with one 

another. 

 
Each of these archetypes is depicted using UML notation as shown in Figure .Detector might be 

refined into a class hierarchy of sensors. 

  



Page 87 

 

 

 

 

 

 

Refining the Architecture into Components 
 

 As the software architecture is refined into components, the structure of the system begins 

to emerge. These analysis classes represent entities within the application (business) 

domain that must be addressed within the software architecture. Hence, the application 

domain is one source for the derivation and refinement of components. Another source is 

the infrastructure domain. 

 The architecture must accommodate many infrastructure components that enable 

application components but have no business connection to the application domain. 

 For example, memory management components, communication components, database 

components, and task management components are often integrated into the software 

architecture. 

 The interfaces depicted in the architecture context diagram imply one or more specialized 

components that process the data that flows across the interface. In some cases (e.g., a 

graphical user interface), a complete subsystem architecture with many components must 

be designed. 

 Continuing the Safe Home Security function example, you might define the set of top-level 

components that address the following functionality: 

 External communication management —coordinates communication of the security 

function with external entities such as other Internet-based systems and external alarm 

notification. 

 Control panel processing —manages all control panel functionality. 

 Detector management —coordinates access to all detectors attached to the system. 

 Alarm processing —verifies and acts on all alarm conditions. 

The overall architectural structure (represented as a UML component diagram) is illustrated in 

Figure. Transactions are acquired by external communication management as they move in from 

components that process the SafeHome GUI and the Internet interface. This information is 

managed by a SafeHome executive component that selects the appropriate product function (in this 

case security). The control panel processing component interacts with the homeowner to 

arm/disarm the security function. The detector management component polls sensors to detect an 

alarm condition, and the alarm processing component produces output when an alarm is detected. 

  



Page 88 

 

 

 

 

 

 
 

Describing Instantiations of the System 
 

 The architectural design that has been modeled to this point is still relatively high level. 

The context of the system has been represented; archetypes that indicate the important 

abstractions within the problem domain have been defined, the overall structure of the 

system is apparent, and the major software components have been identified. However, 

further refinement is still necessary. 

 

To accomplish this, an actual instantiation of the architecture is developed. By this we mean that the 

architecture is applied to a specific problem with the intent of demonstrating that the structure and 

components are appropriate. 

Figure illustrates an instantiation of the SafeHome architecture for the security system. 

Components shown in Figure above are elaborated to show additional detail. For example, the 

detector management component interacts with a scheduler infrastructure component that 

implements polling of each sensor object used by the security system. Similar elaboration is 

performed for each of the components represented in Figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 89 

 

 

 

 

 

 

 

 WebApps are client-server applications typically structured using multilayered 

architectures, including a user interface or view layer, a controller layer which directs the 

flow of information to and from the client browser based on a set of business rules, and a 

content or model layer that may also contain the business rules for the WebApp. 

 The user interface for a WebApp is designed around the characteristics of the web browser 

running on the client machine (usually a personal computer or mobile device). Data layers 

reside on a server. Business rules can be implemented using a server-based scripting 

language such as PHP or a client-based scripting language such as JavaScript. An architect 

will examine requirements for security and usability to determine which features should be 

allocated to the client or server. 

 The architectural design of a WebApp is also influenced by the structure (linear or 

nonlinear) of the content that needs to be accessed by the client. The architectural 

components (Web pages) of a WebApp are designed to allow control to be passed to other 

system components, allowing very flexible navigation structures. The physical location of 

media and other content resources also influences the architectural choices made by 

software engineers. 

  



Page 90 

 

 

 

 

 

Architectural Design for Mobile Apps 
 

 Mobile apps are typically structured using multilayered architectures, including a user 

interface layer, a business layer, and a data layer. With mobile apps you have the choice of 

building a thin Web-based client or a rich client. With a thin client, only the user interface 

resides on the mobile device, whereas the business and data layers reside on a server. With 

a rich client all three layers may reside on the mobile device itself. 

 Mobile devices differ from one another in terms of their physical characteristics (e.g., 

screen sizes, input devices), software (e.g., operating systems, language support), and 

hardware (e.g., memory, network connections). Each of these attributes shapes the direction 

of the architectural alternatives that can be selected. 

 A number of considerations that can influence the architectural design of a mobile app: (1) 

the type of web client (thin or rich) to be built, (2) the categories of devices (e.g., smart 

phones, tablets) that are supported, (3) the degree of connectivity (occasional or persistent) 

required, (4) the bandwidth required, (5) the constraints imposed by the mobile platform, 

(6) the degree to which reuse and maintainability are important, and (7) device resource 

constraints (e.g., battery life, memory size, processor speed). 

 

COMPONENT LEVEL DESIGN 

Component 

A component is a modular building block for computer software. The OMG 

Unified Modeling Language Specification defines a component as ―a 

modular, deployable, and replaceable part of a system that encapsulates 

implementation and exposes a set of interfaces.‖ 

Components populate the software architecture and, as a consequence, play a 

role in achieving the objectives and requirements of the system  to  be  built.  

Because components reside within the software architecture, they must 

communicate and collaborate with other components and with entities (e.g., 

other systems, devices, and people) that exist outside the boundaries of the 

software. 

The design for each component, represented in graphical, tabular, or text-based notation, is the 

primary work product produced during component-level design. 

Three important views of what a component is and how it is used as 

design modeling proceeds. 

  



Page 91 

 

 

 

 

 

An Object-Oriented View 

In the context of object-oriented software engineering, a component contains a set 

of collaborating classes. Each class within a component has been fully elaborated to 

include all attributes and operations that are relevant to its implementation. As part 

of the design elaboration, all interfaces that enable the classes to communicate and 

collaborate with other design classes must also be defined. To accomplish this, we 

begin with the analysis model and elaborate analysis classes(for components that 

relate to the problem domain) and infrastructure classes (for components (for 

components that provide support services for the problem domain). 

The Traditional View 

A traditional component called a module, resides within the software architecture 

and serves one of three important roles: (1) a control component that coordinates 

the invocation of all other problem domain components, (2) a problem domain 

component that implements a complete or partial function that is required by the 

customer, or (3) an infrastructure component that is responsible for functions that 

support the processing required in the problem domain. 

A Process-Related View 

Over the past three decades, the software engineering community has emphasized 

the need to build systems that make use of existing software components or design 

patterns. A catalog of proven design or code-level components is made available 

to you as design work proceeds. As the software architecture is developed, we 

choose components or design patterns from the catalog and use them to populate 

the architecture. Because these components have been created with reusability in 

mind, a complete description of their interface, the function(s) they perform, and 

the communication and collaboration they require are all available to you. 

DESIGN CLASS BASED COMPONENTS 

Basic design principles 

The Open-Closed Principle (OCP). ―A module [component] should be open for 

extension but closed for modification‖ 

 Should specify the component in a way that allows it to be extended (within 

the functional domain that it addresses) without the need to make internal (code 

or logic-level) modifications to the component itself. 

 To accomplish this, you create abstractions that serve as a buffer between 

the functionality that is likely to be extended and the design class itself. 

 One way to accomplish OCP for the Detector class is illustrated in Figure 

.The sensor interface presents a consistent view of sensors to the detector 

component. If a new type of sensor is added no change is required for the 

Detector class(component). The OCP is preserved. 



Page 92 

 

 

 

 

The Liskov Substitution Principle (LSP). 

 ―Subclasses should be substitutable for their base classes”. 

 This design principle suggests that a component that uses a base class should 

continueto function properly if a class derived from the base class is passed 

to the component instead 

 In the context, a ―contract‖ is a pre-condition that must be true before the 

component uses a base class and a post-condition that should be true after 

the component uses a base class. When you create derived classes, be sure 

they conform to the pre- and post-conditions. 

Dependency Inversion Principle (DIP). 

 ―Depend on abstractions. Do not dependon concretions”. 

 Abstractions are the place where a design can be extended without great 

complication. The more a component depends on other concrete 

components (rather than on abstractions such as an interface), the more 

difficult it will be to extend. 

The Interface Segregation Principle (ISP). 

 “Many client-specific interfaces are better than one general purpose 

interface”. 

 There are many instances in which multiple client components use the 

operations provided by a server class. 

  Should create a specialized interface to serve each major category of 

clients. Only those operations that are relevant to a particular category of 

clients should be specified in the interface for that client. If multiple clients 

require the same operations, it should be specified in each of specialized 

interfaces. 

The Release Reuse Equivalency Principle (REP). 

 “The granule of reuse is the granule of release” 

 When classes or components are designed for reuse, an implicit contract is 

established between the developer of the reusable entity and the people who 

will use it. 

 The developer commits to establish a release control system that supports 

and maintains older versions of the entity while theusers slowly upgrade to 

the most current version. 

  



Page 93 

 

 

 

 

  

The Common Closure Principle (CCP). 

 “Classes that change together belong together.” 

 Classes should be packaged cohesively. 

 That is, when classes are packaged as part of a design, they should address 

the same functional or behavioural area. 

 When some characteristic of that area must change, it is likely that only 

those classes within the package will require modification. This leads tomore 

effective change control and release management 

The Common Reuse Principle (CRP). 

 “Classes that aren’t reused together should not be grouped together” 

 When one or more classes with a package changes, the release number of 

the package changes. 

 All other classes or packages that rely on the package that has been changed 

must now update to the most recent release of the package and be tested to 

ensure that the new release operated without incident. 

 If classes are not grouped cohesively, it is possible that a class with no 

relationship to other classes within a package is changed. This will precipitate 

unnecessary integration and testing. 

 For this reason, only classes that are reused together should be included 

within a package. 

Component-Level Design Guidelines 

These guidelinesapply to components, their interfaces, and the dependencies and 

inheritance characteristics that have an impact on the resultant design. 

Suggests the following guidelines: 

Components. Naming conventions should be established for components that are 

specified as part of the architectural model and then refined and elaborated aspart 

of the component-level model. Architectural component names should be drawn 

from the problem domain and should have meaning to all stakeholders who view 

the architectural model. For example, the class 

We can choose to use stereotypes to help identify the nature of components at the 

detailed design level. For example, <<infrastructure>> might be used to identify an 

infrastructure component, <<database>> could be used to identify a database that 

services one or more design classes or the entire system; <<table>> can be used to 

identify a table within a database. 

  



Page 94 

 

 

 

 

 

Interfaces. Interfaces provide important information about communication and 

collaboration (as well as helping us to achieve the OPC). 

Dependencies and Inheritance. For improved readability, it is a good idea to model 

dependencies from left to right and inheritance from bottom (derived classes) to 

top (base classes). 

Cohesion 

Implies that a component or class encapsulates only attributes and operations that 

are closely related to one another and to the class or component itself. 

Functional. Exhibited primarily by operations, this level of cohesion occurs when a 

module performs one and only one computation and then returns aresult. 

Layer. Exhibited by packages, components, and classes, this type of cohesion 

occurs when a higher layer accesses the services of a lower layer, but lower layers 

do not access higher layers. 

Communicational. All operations that access the same data are defined within 

one class. In general, such classes focus solely on the data in question, accessing 

and storing it. 

 

Classes and components that exhibit functional, layer, and communicational 

cohesion are relatively easy to implement, test, and maintain. 

Coupling 

 As the amount of communication and collaboration increases (i.e., as 

the degree of ―connectedness‖ between classes increases), the 

complexity of the system also increases. And as complexity increases, 

the difficulty of implementing, testing, and maintaining software 

grows. 

 Coupling is a qualitative measure of the degree to which classes are 

connected to one another. As classes (and components) become more 

interdependent, coupling increases. An important objective in 

component-level design is to keep coupling as low as is possible. 

 Content coupling occurs when one component ―surreptitiously 

modifies data that is internal to another component‖ .This violates 

information hiding—a basic design concept. 

  



Page 95 

 

 

 

 

 

 Control coupling occurs when operation A() invokes operation B() 

and passes a control flag to B. The control flag then ―directs‖ logical 

flow within B. The problem with this form of coupling is that an 

unrelated change in B can result in the necessity to change the 

meaning of the control flag that A passes. If this is overlooked, an 

error will result. 

  External coupling occurs when a component communicates or 

collaborates with infrastructure components (e.g., operating system 

functions, database capability, tele-communication functions). 

Although this type of coupling is necessary, it should be limited to a 

small number of components or classes within a system. 

 Software must communicate internally and externally. Therefore, 

coupling is a fact of life. However, the designer should work to 

reduce coupling whenever possible 

 

CONDUCTING COMPONENT LEVEL DESIGN 

 

 

The following steps represent a typical task set for component-level design, when 

it is applied for an object-oriented system. 

Step 1. Identify all design classes that correspond to the problem domain. Using 

the requirements and architectural model, each analysis class and architectural 

component is elaborated 

Step 2. Identify all design classes that correspond to the infrastructure domain. 

These classes are not described in the requirements model and are often missing 

from the architecture model, but they must be described at this point. Classes and 

components in this category include GUI components (often available as reusable 

components), operating system components, and object and data management components. 

Step 3. Elaborate all design classes that are not acquired as reusable components. 

Elaboration requires that all interfaces, attributes, and operations necessary to 

implement the class be described in detail. Design heuristics (e.g., component 

cohesion and coupling) must be considered as this task is conducted. 

Step 3a. Specify message details when classes or components collaborate. The 

requirements model makes use of a collaboration diagram to show how analysis classes 

collaborate with one another. Messages that are passed between objects within a 

system. 

  



Page 96 

 

 

 

 

 

Step 3b. Identify appropriate interfaces for each component.Within the context of 

component-level design, a UML interface is ―a group of externally visible (i.e., public) 

operations. The interface contains no internal structure, it has no attributes, no 

associations. ―. 

Step 3c. Elaborate attributes and define data types and data structures required to 

implement them. In general, data structures and types used to define attributes are 

defined within the context of the programming language that is to be used for 

implementation. 

Step 3d. Describe processing flow within each operation in detail. This may be 

accomplished using a programming language-based pseudo code or with a UML 

activity diagram. Each software component is elaborated through a number of 

iterations that apply the stepwise refinement concept. 

The first iteration defines each operation as part of the design class. In every case, 

the operation should be characterized in a way that ensures high cohesion; that is, 

the operation should perform a single targeted function or sub function. The next 

iteration does little more than expand the operation name. 

Step 4. Describe persistent data sources (databases and files) and identify the 

classes required to manage them. Databases and files normally transcend the 

design description of an individual component. In most cases, these persistent data 

stores are initially specified as part of architectural design. However, as design 

elaboration proceeds, it is often useful to provide additional detail about the 

structure and organization of these persistent data sources. 

Step 5. Develop and elaborate behavioural representations for a class or 

component. UML state diagrams were used as part of the requirements model to 

represent the externally observable behaviour of the system and the more localized 

behaviour of individual analysis classes. During component-level design, it is 

sometimes necessary to model the behaviour of a design class. 

The dynamic behavior of an object (an instantiation of a design class as the 

program executes) is affected by events that are external to it and the current state 

(mode of behavior) of the object. To understand the dynamic behavior of an object, 

you should examine all use cases that are relevant to the design class throughout 

its life. 

  



Page 97 

 

 

 

 

 

Step 6. Elaborate deployment diagrams to provide additional implementation 

detail. Deployment diagrams are used as part of architectural design and are 

represented in descriptor form. In this form, major system functions 

(oftenrepresented as subsystems) are represented within the context of the computing 

environment that will house them. 

During component-level design, deployment diagrams can be elaborated to 

represent the location of key packages of components. However, components 

generally are not represented individually within a component diagram. In some 

cases, deployment diagrams are elaborated into instance form at this time. This 

means that the specific hard- ware and operating system environment(s) that will be 

used is (are) specified and the location of component packages within this 

environment is indicated. 

Step 7. Refactor every component-level design representation and always con- sider 

alternatives. Design is an iterative process. The first component-level model we 

create will not be as complete, consistent, or accurate as the nth iteration you apply 

to the model. It is essential to refactor as design work is conducted. 

COMPONENT LEVEL DESIGN FOR WEB APPLICATIONS 

WebApp component is (1) a well-defined cohesive function that manipulates 

content or provides computational or data processing for an end user or (2) a 

cohesive package of content and functionality that provides the end user with some 

required capability. Therefore, component-level design for WebApps often 

incorporates elements of content design and functional design. 

Content Design at the Component Level 

Content design at the component level focuses on content objects and the manner 

in which they may be packaged for presentation to a WebApp end user. The 

formality of content design at the component level should be tuned to the 

characteristics of the WebApp to be built. In many cases, content objects need not 

be organized as components and can be manipulated individually. However, as the 

size and complexity (of the WebApp, content objects, and their interrelation-ships) 

grows, it may be necessary to organize content in a way that allows easier reference 

and design manipulation. In addition, if content is highly dynamic (e.g., the content 

for an online auction site), it becomes important to establish a clear structural 

model that incorporates content components. 

  



Page 98 

 

 

 

 

 

Functional Design at the Component Level 

WebApp functionality is delivered as a series of components developed in parallel 

with the information architecture to ensure consistency. We beginby considering 

both the requirements model and the initial information architecture and then 

examining how functionality affects the user‘s interaction with the application, the 

information that is presented, and the user tasks that are conducted. 

During architectural design, WebApp content and functionality are combined to 

create a functional architecture. A functional architecture is a representation of 

the functional domain of the WebApp and describes the key functional components 

in the WebApp and how these components interact with each other 

  



Page 99 

 

 

 

 

 

Design Document Template 

 

 

 

  



Page 100 

 

 

 

 

 

CASE STUDY 

Ariane 5 launch accident 

 

This case study describes the accident that occurred on the initial launch of the Ariane 5 rocket, a 

launcher developed by the European Space Agency. The rocket exploded shortly after take-off and 

the subsequent enquiry showed that this was due to a fault in the software in the inertial navigation 

system. 

In June 1996, the then new Arianne 5 rocket was launched on its maiden flight. It carried a 

payload of scientific satellites. Ariane 5 was commercially very significant for the European Space 

Agency as it could carry a much heavier payload than the Ariane 4 series of launchers. Thirty 

seven seconds into the flight, software in the inertial navigation system, whose software was 

reused from Ariane 4, shut down causing incorrect signals to be sent to the engines. These swivelled 

in such a way that uncontrollable stresses were placed on the rocket and it started to break up. 

Ground controllers initiated self-destruct and the rocket and payload was destroyed. 

A subsequent enquiry showed that the cause of the failure was that the software in the inertial 

reference system shut itself down because of an unhandled numeric exception (integer overflow). 

There was a backup software system but this was not diverse so it failed in the same way. 

 
 

 



Page 101 

 

 

 

 

 

 

 

Module 3 Notes 
  



Page 102 

 

 

 

 

 Module 3  

Review Techniques - Cost impact of Software Defects, Code review and statistical 

analysis. Informal Review, Formal Technical Reviews, Post-mortem evaluations. 

Software testing strategies - Unit Testing, Integration Testing, Validation testing, 

System testing, Debugging, White box testing, Path testing, Control Structure testing, 

Black box testing, Testing Documentation and Help facilities. Test automation, Test-

driven development, Security testing. Overview of DevOps and Code Management - 

Code management, DevOps automation, Continuous Integration, Delivery, and 

Deployment (CI/CD/CD). Software Evolution - Evolution processes, Software 

maintenance.  
 

Review Techniques  
 Software reviews are a ―filter‖ for the software process. That is, reviews are applied at various points 

during software engineering and serve to uncover errors and defects that can then be removed.  

 Software reviews ―purify‖ software engineering work products, including requirements and design 

models, code, and testing data. Many different types of reviews can be conducted as part of software 

engineering.  

 Focus on technical or peer reviews, exemplified by casual reviews, walkthroughs, and inspections. A 

technical review (TR) is the most effective filter from a quality control standpoint. Conducted by 

software engineers (and others) for software engineers, the TR is an effective means for uncovering 

errors and improving software quality.  
 
COST IMPACT OF SOFTWARE DEFECTS  

 The primary objective of technical reviews is to find errors during the process so that they do not 

become defects after release of the software. The obvious benefit of technical reviews is the early 

discovery of errors so that they do not propagate to the next step in the software process.  

 The primary objective of an FORMAL TECHNICAL REVIEW (FTR) is to find errors before they are 

passed on to another software engineering activity or released to the end user.  

 Within the context of the software process, the terms defect and fault are synonymous. Both imply a 

quality problem that is discovered after the software has been released to end users (or to another 

framework activity in the software process).  

 The primary objective of technical reviews is to find errors during the process so that they do not 

become defects after release of the software.  

 The obvious benefit of technical reviews is the early discovery of errors so that they do not propagate to 

the next step in the software process.  

Review techniques have been shown to be up to 75 percent effective in uncovering design flaws.  

detecting and removing a large percentage of these errors, the review process substantially reduces the 

cost of subsequent activities in the software process.  
 

DEFECT AMPLIFICATION AND REMOVAL  

 

• A defect amplification model can be used to illustrate the generation and detection of errors during the 

design and code generation actions of a software process.  



Page 103 

 

 

 

 

• To conduct reviews, you must expend time and effort, and your development organization must spend 

money  

 
 

REVIEW METRICS AND THEIR USE  

• Technical reviews are one of many actions that are required as part of good software engineering 

practice.  

• Each action requires dedicated human effort  

• Preparation effort, Ep—the effort (in person-hours) required to review a work product prior to the 

actual review meeting  

• Assessment effort, Ea— the effort (in person-hours) that is expended during the actual review  

• Rework effort, Er — the effort (in person-hours) that is dedicated to the correction of those errors 

uncovered during the review  

• Work product size, WPS—a measure of the size of the work product that has been reviewed (e.g., the 

number of UML models, or the number of document pages, or the number of lines of code)  

 

• ANALYZING MATRICES  

• Minor errors found, Errminor—the number of errors found that can be categorized as minor 

(requiring less than some prespecified effort to correct)  

• Major errors found, Errmajor—the number of errors found that can be categorized as major 

(requiring more than some prespecifi ed effort to correct  

• The total review effort and the total number of errors discovered are defi ned as: Ereview = Ep + Ea + 

Er Errtot = Errminor + Errmajor  

• Error density represents the errors found per unit of work product reviewed.  

 

Error density = Errtot/ WPS  

 

  



Page 104 

 

 

 

 

Cost-Effectiveness of Reviews  

• It is difficult to measure the cost-effectiveness of any technical review in real time.  

• A software engineering organization can assess the effectiveness of reviews and their cost benefit only 

after reviews have been completed, review metrics have been collected, average data have been 

computed, and then the downstream quality of the software is measured  

• Effort saved per error = Etesting - Ereviews  

 

Effort expended with and without reviews  

• Effort expended when reviews are used does increase early in the development of a software increment.  

• testing and corrective effort is reduced.  

• The deployment date for development with reviews is sooner than the deployment date without reviews.  

• Reviews don‘t take time, they save it.  

 
REVIEWS : A FORMALITY SPECTRUM  

• Technical reviews should be applied with a level of formality that is appropriate for the product to be built, the 

project time line, and the people who are doing the work.  

• The formality of a review increases when  

• Distinct roles are explicitly defined for the reviewers,  

• There is a sufficient amount of planning and preparation for the review,  

• A distinct structure for the review (including tasks and internal work products) is defined,  

• A set of specific tasks would be conducted based on an agenda that was developed before the     

   review occurred.  

• The results of the review would be formally recorded, and the team would decide on the status    

   of the work product based on the outcome of the review.  

• Members of the review team might also verify that the corrections made were done properly  



Page 105 

 

 

 

 

 
Informal Reviews 

 Informal reviews include a simple desk check of a software engineering work product with a colleague, 

a casual meeting (involving more than two people) for the purpose of reviewing a work product  

 A simple desk check or a casual meeting conducted with a colleague is a review. However, because 

there is no advance planning or preparation, no agenda or meeting structure, and no follow-up on the 

errors that are uncovered, the effectiveness of such reviews is considerably lower than more formal 

approaches. But a simple desk check can and does uncover errors that might otherwise propagate 

further into the software process.  
 

REVIEW TECHNIQUES  

 

FORMAL TECHNICAL REVIEWS  

A formal technical review (FTR) is a software quality control activity performed by software engineers (and 

others). The objectives of an FTR are: (1) to uncover errors in function, logic, or implementation for any 

representation of the software; (2) to verify that the software under review meets its requirements; (3) to ensure 

that the software has been represented according to predefined standards; (4) to achieve software that is 

developed in a uniform manner; and (5) to make projects more manageable. In addition, the FTR serves as a 

training ground, enabling junior engineers to observe different approaches to software analysis, design, and 

implementation. The FTR also serves to promote backup and continuity because a number of people become 

familiar with parts of the software.  

The FTR is actually a class of reviews that includes walkthroughs and inspections. Each FTR is conducted as a 

meeting and will be successful only if it is properly planned, controlled, and attended. In the sections that follow, 

guidelines similar to those for a walkthrough are presented as a representative formal technical review. If you 

have interest in software inspections, as well as additional information on walkthroughs  

 
  



Page 106 

 

 

 

 

Code Walkthrough  

 We present the code and accompanying documentation to the review team, and the team comments on 

their correctness.  

 During walkthrough, we lead and control the discussion. The atmosphere is informal and the focus of 

attention is on the code, not the coder.  

 Although Supervisory personnel may be present, walkthrough has no influence on the performance 

appraisal, consistent with the general intent of testing, finding faults, not fixing them.  

 
Code Inspection  

 Similar to Code walkthrough, but is more formal. In an inspection, review team checks the code and 

documentation against a prepared list of concerns.  

 For eg: the team may examine the definition and use of data type and structures to see if their use is 

consistent with the design and with standards and procedures. The team can review algorithms and 

computations for their correctness and efficiency. Interfaces also checked. The team may estimate the 

code‘s performance characteristics in terms of memory usage or processing speed.  

 
Inspecting code usually involves several steps.  

 First , the team may meet as a group for overview of the code and a description of the inspection goals.  

 Then team members prepare individually for a second group meeting. Each inspector studies the code 

and its related documents, noting faults found. Finally in a group meeting, team members report what 

they have found, recording additional faults discovered in the process of discussing individuals 

findings. Sometimes faults discovered by an individual are considered to be false positives‖: items a 

that seem to be faults but in-fact were not considered by the group to be true problems.  

 
The Review Meeting  

 Between three and five people (typically) should be involved in the review.  

 Advance preparation should occur but should require no more than two hours of work for each person.  

 The duration of the review meeting should be less than two hours.  

 The focus of the FTR is on a work product (e.g., a portion of a requirements model, a detailed 

component design, source code for a component).  

 The individual who has developed the work product—the producer— informs the project leader that 

the work product is complete and that a review is required.  

 The project leader contacts a review leader, who evaluates the product for readiness, generates copies 

of product materials, and distributes them to two or three reviewers for advance preparation.  

 Each reviewer is expected to spend between one and two hours reviewing the product, making notes.  

 The review meeting is attended by the review leader, all reviewers and the producer.  

 One of the reviewers takes on the role of a recorder, that is, the individual who records (in writing) all 

important issues raised during the review.  

 The FTR begins with an introduction of the agenda and a brief introduction by the producer.  

 The producer then proceeds to ―walk through‖ the work product, explaining the material, while 

reviewers raise issues based on their advance preparation. When valid problems or errors are 

discovered, the recorder notes each.  

 At the end of the review, all attendees of the FTR must decide whether to:  

A) accept the product without further modification,  

B) reject the product due to severe errors (once corrected, another review must be performed), or  



Page 107 

 

 

 

 

C) Accept the product provisionally (minor errors have been encountered and must be corrected, but no 

additional review will be required).  

 After the decision is made, all FTR attendees complete a sign-off, indicating their participation in the 

review and their concurrence with the review team‘s findings.  

 Review Reporting and Record Keeping  

 During the FTR, a reviewer (the recorder) actively records all issues that have been raised.  

 These are summarized at the end of the review meeting, and a review issues list is produced.  

 In addition, a formal technical review summary report is completed. A review summary report answers 

three questions:  

 What was reviewed?  

 Who reviewed it?  

 What were the findings and conclusions?  
 

The review summary report is a single-page form (with possible attachments). It becomes part of the project 

historical record and may be distributed to the project leader and other interested parties. The review issues list 

serves two purposes:  

(1) to identify problem areas within the product and  

(2) to serve as an action item checklist that guides the producer as corrections are made.  

An issues list is normally attached to the summary report.  

 

  



Page 108 

 

 

 

 

Review Guidelines  
The following represents a minimum set of guidelines for formal technical reviews:  

1. Review the product, not the producer.  

2. Set an agenda and maintain it.  

3. Limit debate and rebuttal.  

4. Enunciate problem areas, but don't attempt to solve every problem noted.  

5. Take written notes.  

6. Limit the number of participants and insist upon advance preparation.  

7. Develop a checklist for each product that is likely to be reviewed.  

8. Allocate resources and schedule time for FTRs.  

9. Conduct meaningful training for all reviewers.  

10. Review your early reviews  

 

POST-MORTEM EVALUATIONS  

 Post-mortem evaluation (PME) as a mechanism to determine what went right and what went wrong 

when software engineering process and practice are applied in a specific project. 

 Unlike an FTR that focuses on a specific work product, a PME examines the entire software project, 

focusing on both ― excellences (that is, achievements and positive experiences) and challenges 

(problems and negative experiences)‖ 

 PME is attended by members of the software team and stakeholders. The intent is to identify 

excellences and challenges and to extract lessons learned from both. 

 To determine whether quality control activities are working, a set of metrics should be collected. 

Review metrics focus on the effort required to conduct the review and the types and severity of errors 

uncovered during the review. Once metrics data are collected, they can be used to assess the efficacy of 

the reviews you do conduct. Industry data indicates that reviews provide a significant return on 

investment. 

 



Page 109 

 

 

 

 

SOFTWARE TESTING STRATEGIES  

 
A STRATEGIC APPROACH TO SOFTWARE TESTING  

Testing is a set of activities that can be planned in advance and conducted systematically. A strategy for software 

testing is developed by the project manager, software engineers, and testing specialists. Testing begins ―in the 

small‖ and progresses ―to the large.‖ By this we mean that early testing focuses on a single component or on a 

small group of related components and applies tests to uncover errors in the data and processing logic that have 

been encapsulated by the component(s). After components are tested they must be integrated until the complete 

system is constructed. At this point, a series of high-order tests are executed to uncover errors in meeting 

customer requirements. As errors are uncovered, they must be diagnosed and corrected using a process that is 

called debugging.  

A number of software testing strategies have been proposed ,all have the following generic characteristics:  

 To perform effective testing, you should conduct effective technical reviews . By doing this, many 

errors will be eliminated before testing commences. 

 Testing begins at the component level and works ―outward‖ toward the integration of the entire 

computer-based system. 

 Different testing techniques are appropriate for different software engineering approaches and at 

different points in time. 

 Testing is conducted by the developer of the software and (for large projects) an independent test 

group. 

 Testing and debugging are different activities, but debugging must be accommodated in any testing 

strategy. 

 

Verification and Validation  

Software testing is one element of a broader topic that is often referred to as verification and validation (V&V). 

Verification refers to the set of tasks that ensure that software correctly implements a specific function. 

Validation refers to a different set of tasks that ensure that the software that has been built is traceable to 

customer requirements. Boehm states this another way: Verification: ―Are we building the product right?‖  

Validation: ―Are we building the right product?‖  

  



Page 110 

 

 

 

 

Software Testing Strategy—The Big Picture  

 

 
Figure Testing Strategy  

 

A strategy for software testing may also be viewed in the context of the spiral ( Figure ).  

 Unit testing begins at the vortex of the spiral and concentrates on each unit (e.g., component, class, or 

WebApp content object) of the software as implemented in source code. 

 Testing progresses by moving outward along the spiral to integration testing, where the focus is on 

design and the construction of the software architecture. 

 Taking another turn outward on the spiral, you encounter validation testing, where requirements 

established as part of requirements modeling are validated against the software that has been 

constructed. 

 Finally, you arrive at system testing, where the software and other system elements are tested as a 

whole. To test computer software, you spiral out along streamlines that broaden the scope of testing 

with each turn. 

 Initially, tests focus each component individually, ensuring that it functions properly as a unit. Hence, 

the name unit testing. Unit testing makes heavy use of testing techniques that exercise specific paths in 

a component‘s control structure to ensure complete coverage and maximum error detection. 

 Next, components must be assembled or integrated to form the complete software package. Integration 

testing addresses the issues associated with the dual problems of verification and program construction. 

Test case design techniques that focus on inputs and outputs are more prevalent during integration, 

although techniques that exercise specific program paths may be used to ensure coverage of major 

control paths. 

 After the software has been integrated (constructed), a set of high-order tests is conducted. Validation 

criteria (established during requirements analysis) must be evaluated. Validation testing provides final 

assurance that software meets all functional, behavioral, and performance requirements. 

 



Page 111 

 

 

 

 

Figure : Software Testing steps  

 

 The last high-order testing step falls outside the boundary of software engineering and into the broader 

context of computer system engineering. Software, once validated, must be combined with other 

system elements (e.g., hardware, people, databases). 

 System testing verifies that all elements mesh properly and that overall system function/performance is 

achieved. 
 

Unit Testing  

 Unit testing focuses verification effort on the smallest unit of software design—the software component 

or module. 

 Using the component-level design description, important control paths are tested to uncover errors 

within the boundary of the module. 

 The unit test focuses on the internal processing logic and data structures within the boundaries of a 

component. This type of testing can be conducted in parallel for multiple components. 

 
  



Page 112 

 

 

 

 

Unit Test Considerations.  

 Unit tests are illustrated schematically in Figure. 

 

 The module interface is tested to ensure that information properly flows into and out of the program 

unit under test. 

 Local data structures are examined to ensure that data stored temporarily maintains its integrity during 

all steps in an algorithm‘s execution. 

 All independent paths through the control structure are exercised to ensure that all statements in a 

module have been executed at least once. 

 Boundary conditions are tested to ensure that the module operates properly at boundaries established to 

limit or restrict processing. And finally, all error handling paths are tested. 

 Data flow across a component interface is tested before any other testing is initiated. 

 If data do not enter and exit properly, all other tests are moot. 

 In addition, local data structures should be exercised and the local impact on global data should be 

ascertained (if possible) during unit testing. 

 Selective testing of execution paths is an essential task during the unit test. 

 Test cases should be designed to uncover errors due to erroneous computations, incorrect comparisons, 

or improper control flow. 

 Boundary testing is one of the most important unit testing tasks. Software often fails at its boundaries. 

That is, errors often occur when the n th element of an n -dimensional array is processed, when the ith 

repetition of a loop with I passes is invoked, when the maximum or minimum allowable value is 

encountered. 

  



Page 113 

 

 

 

 

 Test cases that exercise data structure, control flow, and data values just below, at, and just above 

maxima and minima are very likely to uncover errors. 

 A good design anticipates error conditions and establishes error-handling paths to reroute or cleanly 

terminate processing when an error does occur -antibugging. 

 Among the potential errors that should be tested when error handling is evaluated are: (1) error 

description is unintelligible, 

(2) error noted does not correspond to error encountered,  

 error condition causes system intervention prior to error handling, exception-condition processing is 

incorrect, or error description does not provide enough information to assist in the location of the cause 

of the error.  

 
 

Unit-Test  Procedures.  

 

 Unit testing is normally considered as an adjunct tothe coding step. The design of unit tests can occur 

before coding begins or aftersource code has been generated. 

 A review of design information provides guidancefor establishing test cases that are likely to uncover 

errors in each of thecategories . 

 Each test case should be coupled with a set of expected results. 

 

 Because a component is not a stand-alone program, driver and/or stub softwaremust often be developed 

for each unit test. 

 The unit test environment isillustrated in Figure . 

 

 In most applications a driver is nothing more than a―main program‖ that accepts test-case data, passes 

 

 



Page 114 

 

 

 

 

 Stubs serve to replace modules that aresubordinate (invoked by) the component to be tested. 

 

 A stub or ―dummy subprogram‖uses the subordinate module‘s interface, may do minimal data 

manipulation, prints verification of entry, and returns control to the module undergoingtesting. 

 Drivers and stubs represent testing ―overhead.‖ That is, both are software thatmust be coded (formal 

design is not commonly applied) but that is not deliveredwith the final software product. 

 If drivers and stubs are kept simple, actual overhead is relatively low. Unfortunately, many components 

cannot be adequatelyunit tested with ―simple‖ overhead software. 

 In such cases, complete testing canbe postponed until the integration test step (where drivers or stubs 

are also used).  

 

Integration Testing  

 Components must be assembled or integrated to form the complete software package. where the focus 

is on design and the construction of the software architecture. 

 Integration testing addresses the issues associated with the dual problems of verification and program 

construction. Testcase design techniques that focus on inputs and outputs are more prevalent during 

integration, although techniques that exercise specific program paths may be used to ensure coverage of 

major control paths. 

 Integration testing is a systematic technique for constructing the software architecture while at the same 

time conducting tests to uncover errors associated with interfacing. The objective is to take unit-tested 

components and build a program structure that has been dictated by design. 

 To construct the program using a ―big bang‖ approach. All components are combined in advance and 

the entire program is tested as a whole. Errors are encountered, but correction is difficult because 

isolation of causes is complicated by the vast expanse of the entire program. 

 Incremental integration is the antithesis of the big bang approach. The program is constructed and 

tested in small increments, where errors are easier to isolate and correct; interfaces are more likely to be 

tested completely; and a systematic test approach may be applied. 

  



Page 115 

 

 

 

 

 

Top-Down Integration.  

 Top-down integration testing is an incremental approach to construction of the software architecture. 

Modules are integrated by moving downward through the control hierarchy, beginning with the main 

control module (main program). 

 Modules subordinate (and ultimately subordinate) to the main control module are incorporated into the 

structure in either a depth first or breadth-first manner. Referring to Figure below ,depth-first 

integration integrates all components on a major control path of the program structure. Selection of a 

major path is somewhat arbitrary and depends on application-specific characteristics. 

 For example, selecting the left-hand path, components M1, M2 , M5 would be integrated first. Next, 

M8 or (if necessary for proper functioning of M2) M6 would be integrated. 

 Then, the central and right-hand control paths are built. Breadth-first integration incorporates all 

components directly subordinate at each level, moving across the structure horizontally. From the 

figure, components M2, M3, and M4 would be integrated first. The next control level, M5, M6, and so 

on, follows. 

 The integration process is performed in a series of five steps: 

 The main control module is used as a test driver and stubs are substituted for all components directly 

subordinate to the main control module.  

 Depending on the integration approach selected (i.e., depth or breadth first), subordinate stubs are 

replaced one at a time with actual components.  

 Tests are conducted as each component is integrated.  

 On completion of each set of tests, another stub is replaced with the real component.  

 Regression testing (discussed later in this section) may be conducted to ensure that new errors have not 

been introduced.  

Figure : 

Top down integration 

 

 The process continues from step 2 until the entire program structure is built. The top-down integration 

strategy verifies major control or decision points early in the test process. In a ―well- factored‖ program 



Page 116 

 

 

 

 

structure, decision making occurs at upper levels in the hierarchy and is therefore encountered first. If 

major control problems do exist, early recognition is essential. If depth-first integration is selected, a 

complete function of the software may be implemented and demonstrated. Early demonstration of 

functional capability is a confidence builder for all stakeholders.  

  



Page 117 

 

 

 

 

 

Bottom-Up Integration.  

Bottom-up integration testing, as its name implies, begins construction and testing with atomic modules 

(i.e., components at the lowest levels in the program structure). Because components are integrated 

from the bottom up, the functionality provided by components subordinate to a given level is always 

available and the need for stubs is eliminated. A bottom-up integration strategy may be implemented 

with the following steps:  

 

1. Low-level components are combined into clusters (sometimes called builds ) that perform a specific 

software sub function.  

2. A driver (a control program for testing) is written to coordinate test-case input and output.  

3. The cluster is tested.  

 

4. Drivers are removed and clusters are combined moving upward in the program structure.  

 
Figure : Bottom up approach 

  



Page 118 

 

 

 

 

 

Integration follows the pattern illustrated in Figure . Components are combined to form clusters 1, 2, and 3. Each 

of the clusters is tested using a driver (shown as a dashed block). Components in clusters 1 and 2 are subordinate 

to Ma . Drivers D1 and D2 are removed and the clusters are interfaced directly to Ma . Similarly, driver D3 for 

cluster 3 is removed prior to integration with module Mb.  

Both Ma and Mb will ultimately be integrated with component Mc , and so forth. As integration moves upward, 

the need for separate test drivers lessens. In fact, if the top two levels of program structure are integrated top 

down, the number of drivers can be reduced substantially and integration of clusters is greatly simplified.  

 

Regression Testing.  

 Each time a new module is added as part of integration testing, the software changes. New data flow 

paths are established, new I/O may occur, and new control logic is invoked. Side effects associated 

with these changes may cause problems with functions that previously worked flawlessly. 

 Regression testing refers to a type of software testing that is used to verify any modification or update 

in a software without affecting the overall working functionality of the said software. 

 Test cases are re-executed to check the previous functionality of the application is working fine, and the 

new changes have not produced any bugs. 

 In the context of an integration test strategy, regression testing is the reexecution of some subset of 

tests that have already been conducted to ensure that changes have not propagated unintended side 

effects. 

 Regression testing may be conducted manually, by reexecuting a subset of all test cases or using 

automated capture/playback tools. 

 Capture/playback tools enable the software engineer to capture test cases and results for subsequent 

playback and comparison. 

 

 The regression test suite (the subset of tests to be executed) contains three different classes of CST test 

cases:  

 A representative sample of tests that will exercise all software functions. 

  

 Tests that focus on the software components that have been changed. 

 

 As integration testing proceeds, the number of regression tests can grow quite large. Therefore, the 

regression test suite should be designed to include only those tests that address one or more classes of 

errors in each of the major program functions.  

  



Page 119 

 

 

 

 

 

Smoke Testing.  

 Smoke testing is an integration testing approach that is commonly used when product software is 

developed. 

 Smoke testing is a process where the software build is deployed to quality assurance environment and 

is verified to ensure the stability of the application. Smoke Testing is also known as Confidence 

Testing or Build Verification Testing. 

 Smoke Testing is a software testing process that determines whether the deployed software build is 

stable or not. Smoke testing is a confirmation for QA team to proceed with further software testing. It 

consists of a minimal set of tests run on each build to test software functionalities. 

 It is designed as a pacing mechanism for time-critical projects, allowing the software team to assess 

the project on a frequent basis. 

 

 Smoke Testing is a software testing process that determines whether the deployed software build is 

stable or not. Smoke testing is a confirmation for QA team to proceed with further software testing. 

 It consists of a minimal set of tests run on each build to test software functionalities. Smoke testing is 

also known as ―Build Verification Testing” or “Confidence Testing.‖ 

 In essence, the smoke-testing approach encompasses the following activities:  

 

1. Software components that have been translated into code are integrated into a build. A build 

includes all data files, libraries, reusable modules, and engineered components that are required to 

implement one or more product functions.  

2. A series of tests is designed to expose errors that will keep the build from properly performing its 

function. The intent should be to uncover ―show-stopper‖ errors that have the highest likelihood of 

throwing the software project behind schedule.  
3. The build is integrated with other builds, and the entire product (in its current form) is smoke tested 

daily. The integration approach may be top down or bottom up.  

 The smoke test should exercise the entire system from end to end. 

 Smoke testing provides a number of benefits when it is applied on complex, time-critical software 

projects: 

 

 Integration risk is minimized. Because smoke tests are conducted daily, incompatibilities and other 

show-stopper errors are uncovered early, thereby reducing the likelihood of serious schedule impact 

when errors are uncovered. 

 The quality of the end product is improved. Because the approach is construction  

(integration) oriented, smoke testing is likely to uncover functional errors as well as 

architectural and component-level design errors. If these errors are corrected early, better product 

quality will result.  

 Error diagnosis and correction are simplified. Like all integration testing approaches, errors 

uncovered during smoke testing are likely to be associated with ―new software increments‖—that is, 

the software that has just been added to the build(s) is a probable cause of a newly discovered error. 

 Progress is easier to assess. With each passing day, more of the software has been integrated and 

more has been demonstrated to work. This improves team morale and gives managers a good 

indication that progress is being made. 

 

TEST STRATEGIES FOR WEBAPPS  

 



Page 120 

 

 

 

 

 The strategy for WebApp testing adopts the basic principles for all software testing and applies a 

strategy and tactics that are used for object-oriented systems.  

 The following steps summarize the approach:  

 The content model for the WebApp is reviewed to uncover errors.  

 The interface model is reviewed to ensure that all use cases can be accommodated.  

 The design model for the WebApp is reviewed to uncover navigation errors.  

 The user interface is tested to uncover errors in presentation and/or navigation mechanics.  

 Each functional component is unit tested.  

 Navigation throughout the architecture is tested.  

 The WebApp is implemented in a variety of different environmental configurations and is tested for 

compatibility with each configuration.  

 Security tests are conducted in an attempt to exploit vulnerabilities in the WebApp or within its 

environment.  

 Performance tests are conducted.  

 The WebApp is tested by a controlled and monitored population of end users. The results of their 

interaction with the system are evaluated for errors.  
 

TEST STRATEGIES FOR MOBILEAPPS  

 The strategy for testing mobile applications adopts the basic principles for all software testing. 

However, the unique nature of MobileApps demands the consideration of a number of specialized 

testing approaches:  

 User-experience testing. Users are involved early in the development process to ensure that the 

MobileApp lives up to the usability and accessibility expectations of the stakeholders on all supported 

devices. 

 Device compatibility testing. Testers verify that the MobileApp works correctly on all required 

hardware and software combinations. 

 Performance testing. Testers check nonfunctional requirements unique to mobile devices (e.g., 

download times, processor speed, storage capacity, power availability). 

  



Page 121 

 

 

 

 

 Connectivity testing. Testers ensure that the MobileApp can access any needed networks or Web 

 

 Security testing . Testers ensure that the MobileApp does not compromise the privacy or security 

requirements of its users. 

 Testing-in-the-wild . The app is tested under realistic conditions on actual user devices in a variety of 

networking environments around the globe. 

 Certification testing. Testers ensure that the MobileApp meets the standards established by the app stores 

that will distribute it.  

 

C .VALIDATION TESTING  

 The process of evaluating software during the development process or at the end of the development 

process to determine whether it satisfies specified business requirements. 

 Validation Testing ensures that the product actually meets the client's needs. It can also be defined as to 

demonstrate that the product fulfills its intended use when deployed on appropriate environment. 

 Validation testing begins at the culmination of integration testing, when individual components have 

been exercised, the software is completely assembled as a package, and interfacing errors have been 

uncovered and corrected. At the validation or system level, the distinction between different software 

categories disappears. Testing focuses on user- visible actions and user-recognizable output from the 

system. 
 

C1 :Validation-Test Criteria  

 Software validation is achieved through a series of tests that demonstrate conformity with requirements. 

 A test plan outlines the classes of tests to be conducted, and a test procedure define specific test cases 

that are designed to ensure that all functional requirements are satisfied, all behavioral characteristics 

are achieved, all content is accurate and properly presented, all performance requirements are attained, 

documentation is correct, and usability and other requirements are met (e.g., transportability, 

compatibility, error recovery, maintainability). 

 If a deviation from specification is uncovered, a deficiency list is created. A method for resolving 

deficiencies (acceptable to stakeholders) must be established. 
 

C2 :Alpha and Beta Testing  

 When custom software is built for one customer, a series of acceptance tests are conducted to enable 

the customer to validate all requirements. 

 Conducted by the end user rather than software engineers, an acceptance test can range from an 

informal ―test drive‖ to a planned and systematically executed series of tests. In fact, acceptance testing 

can be conducted over a period of weeks or months, thereby uncovering cumulative errors that might 

degrade the system over time. 

 The alpha test is conducted at the developer‘s site by a representative group of end users. The software 

is used in a natural setting with the developer ―looking over the shoulder‖ of the users and recording 

errors and usage problems. Alpha tests are conducted in a controlled environment.  

 The beta test is conducted at one or more end-user sites. Unlike alpha testing, the developer generally is 

not present. Therefore, the beta test is a ―live‖ application of the software in an environment that cannot 

be controlled by the developer. 

 The customer records all problems (real or imagined) that are encountered during beta testing and 

reports these to the developer at regular intervals. As a result of problems reported during beta tests, 

you make modifications and then prepare for release of the software product to the entire customer 

base. 

 A variation on beta testing, called customer acceptance testing, is sometimes performed when custom 



Page 122 

 

 

 

 

software is delivered to a customer under contract. The customer performs a series of specific tests in 

an attempt to uncover errors before accepting the software from the developer. 

 

D: SYSTEM TESTING  

 

D.1: Recovery Testing  

 Many computer-based systems must recover from faults and resume processing with little or no 

downtime.  

 In some cases, a system must be fault tolerant; that is, processing faults must not cause overall system 

function to cease. In other cases, a system failure must be corrected within a specified period of time or 

severe economic damage will occur.  

 Recovery testing is a system test that forces the software to fail in a variety of ways and verifies that 

recovery is properly performed. If recovery is automatic (performed by the system itself), 

reinitialization, checkpointing mechanisms, data recovery, and restart are evaluated for correctness. If 

recovery requires human intervention, the mean-time-to-repair (MTTR) is evaluated to determine 

whether it is within acceptable limits.  

 

D.2: Security Testing  

 Any computer-based system that manages sensitive information or causes actions that can improperly 

harm (or benefit) individuals is a target for improper or illegal penetration. Penetration spans a broad 

range of activities: hackers who attempt to penetrate systems for sport, disgruntled employees who 

attempt to penetrate for revenge, dishonest individuals who attempt to penetrate for illicit personal gain. 

 Security testing is an integral part of software testing, which is used to discover the weaknesses, risks, 

or threats in the software application and also help us to stop the nasty attack from the outsiders and 

make sure the security of our software applications. 

 The primary objective of security testing is to find all the potential ambiguities and vulnerabilities of 

the application so that the software does not stop working. If we perform security testing, then it helps 

us to identify all the possible security threats and also help the programmer to fix those errors. 

 It is a testing procedure, which is used to define that the data will be safe and also continue the working 

process of the software. 

 

D.3 Stress Testing  

 Stress Testing is a type of software testing that verifies stability & reliability of software application. 

 The goal of Stress testing is measuring software on its robustness and error handling capabilities under 

extremely heavy load conditions and ensuring that software doesn‘t crash under crunch situations. It 

even tests beyond normal operating points and evaluates how software works under extreme 

conditions. It is also known as Endurance Testing, fatigue testing or Torture Testing. 

 The stress testing includes the testing beyond standard operational size, repeatedly to a breaking 

point, to get the outputs. 

 It highlights the error handling and robustness under a heavy load instead of correct behavior under 

regular conditions. 

 In other words, we can say that Stress testing is used to verify the constancy and dependability of the 

system and also make sure that the system would not crash under disaster circumstances. 

 Stress testing executes a system in a manner that demands resources in abnormal quantity, frequency, 

or volume. For example, (1) special tests may be designed that generate 10 interrupts per second, when 

one or two is the average rate, (2)input data rates may be increased by an order of magnitude to 

determine how input functions will respond, (3) test cases that require maximum memory or other 

resources are executed, (4) test cases that may cause thrashing in a virtual operating system are 

designed, (5) test cases that may cause excessive hunting for disk-resident data are created. Essentially, 



Page 123 

 

 

 

 

the tester attempts to break the program. 

 A variation of stress testing is a technique called sensitivity testing. In some situations (the most 

common occur in mathematical algorithms), a very small range of data contained within the bounds of 

valid data for a program may cause extreme and even erroneous processing or profound performance 

degradation. Sensitivity testing attempts to uncover data combinations within valid input classes that 

may cause instability or improper processing. 

  



Page 124 

 

 

 

 

 

D.4 Performance Testing  

 Performance testing is a non-functional software testing technique that determines how the stability, 

speed, scalability, and responsiveness of an application holds up under a given workload .For real-time 

and embedded systems, software that provides required function but does not conform to performance 

requirements is unacceptable. Performance testing is designed to test the run-time performance of 

software within the context of an integrated system. Performance testing occurs throughout all steps in the 

testing process. 

 

Even at the unit level, the performance of an individual module may be assessed as tests are conducted. 

However, it is not until all system elements are fully integrated that the true performance of a system can 

be ascertained.  

 

Performance tests are often coupled with stress testing and usually require both hardware and software 

instrumentation. That is, it is often necessary to measure resource utilization (e.g., processor cycles) in an 

exacting fashion. External instrumentation can monitor execution intervals, log events (e.g., interrupts) as 

 

 

D.5 Deployment Testing 

 

 

environment. 

 Deployment testing, sometimes called configuration testing, exercises the software in each 

environment in which it is to operate. In addition, deployment testing examines all installation procedures 

and specialized installation software (e.g.,―installers‖) that will be used by customers, and all 

documentation that will be used to introduce the software to end users.  

  



Page 125 

 

 

 

 

 

E :THE ART OF DEBUGGING  

 

Debugging occurs as a consequence of successful testing. That is, when a test case uncovers an error, 

debugging is the process that results in the removal of the error.  

 

 art. 

 

E.1 The Debugging Process  

 Figure 22.7 Debugging process  

 

Debugging is not testing but often occurs as a consequence of testing, the debugging process begins with the 

execution of a test case.  

 

Results are assessed and a lack of correspondence between expected and actual performance is encountered. In 

many cases, the non corresponding data are a symptom of an underlying cause as yet hidden. The debugging 

process attempts to match symptom with cause, thereby leading to error correction.  

The debugging process will usually have one of two outcomes: (1) the cause will be found and corrected or (2) 

the cause will not be found. In the latter case, the person performing debugging may suspect a cause, design a test 

case to help validate that suspicion, and work toward error correction in an iterative fashion.  



Page 126 

 

 

 

 

However, a few characteristics of bugs provide some clues:  

 

1. The symptom and the cause may be geographically remote. That is, the symptom may appear in one part of a 

program, while the cause may actually be located at a site that is far removed. Highly coupled components 

(Chapter 12) exacerbate this situation.  

2. The symptom may disappear (temporarily) when another error is corrected.  

3. The symptom may actually be caused by non  errors (e.g., round-off inaccuracies).  

4. The symptom may be caused by human error that is not easily traced.  

5. The symptom may be a result of timing problems, rather than processing Problems.  

6. It may be difficult to accurately reproduce input conditions (e.g., a real- time application in which input 

ordering is indeterminate).  

7. The symptom may be intermittent. This is particularly common in embedded systems that couple hardware 

and software inextricably.  

8. The symptom may be due to causes that are distributed across a number of tasks running on different 

processors.  

 

During debugging, we encounter errors that range from mildly annoying (e.g., an incorrect output format) to 

catastrophic (e.g., the system fails, causing serious economic or physical damage). As the consequences of an 

error increase, the amount of pressure to fi nd the cause also increases. Often, pressure forces a software 

developer to fi x one error and at the same time introduce two more.  

 

E2 Debugging Strategies  

 Debugging is the process of finding and resolving defects or problems within a computer program that 

prevent correct operation of computer software or a system.  

 Debugging has one overriding objective— 

 to find and correct the cause of a software error or defect. 

 The objective is realized by a combination of systematic evaluation, intuition, and luck. In general, three 

debugging strategies have been proposed: brute force, backtracking, and cause elimination. Each of 

these strategies can be conducted manually, but modern debugging tools can make the process much 

more effective. 

 

Debugging Tactics.  

 

 The brute force category of debugging is probably the most common and least efficient method for 

 

 This is the foremost common technique of debugging however is that the least economical method. 

during this approach, the program is loaded with print statements to print the intermediate values with the 

hope that a number of the written values can facilitate to spot the statement in error. This approach 

becomes a lot of systematic with the utilization of a symbolic program (also known as a source code 

debugger), as a result of values of various variables will be simply checked and breakpoints and watch-

points can be easily set to check the values of variables effortlessly. 

  



Page 127 

 

 

 

 

 Backtracking is a fairly common debugging approach that can be used successfully in small programs. 

Beginning at the site where a symptom has been uncovered, the source code is traced backward 

(manually) until the cause is found. Unfortunately, as the number of source lines increases, the number of 

potential backward paths may become unmanageably large. 

 The third approach to debugging— cause elimination—is manifested by induction or deduction and 

introduces the concept of binary partitioning. Data related to the error occurrence are organized to isolate 

potential causes. 

 A ―cause hypothesis‖is devised and the aforementioned data are used to prove or disprove the hypothesis. 

Alternatively, a list of all possible causes is developed and tests are conducted to eliminate each. If initial 

tests indicate that a particular cause hypothesis shows promise, data are refined in an attempt to isolate the 

bug. 

 

Automated Debugging.  

 Each of these debugging approaches can be supplemented with debugging tools that can provide you with 

semiautomated support as debugging strategies are attempted. 

 Integrated development environments (IDEs) provide a way to capture some of the language-specific 

predetermined errors (e.g., missing end-of-statement characters, undefined variables, and so on) without 

requiring compilation.‖ 

 A wide variety of debugging compilers, dynamic debugging aids (―tracers‖), automatic test-case 

generators, and cross-reference mapping tools are available. However, tools are not a substitute for 

careful evaluation based on a complete design model and clear source code. 

 

SOFTWARE TESTING FUNDAMENTALS  

 The goal of testing is to find errors, and a good test is one that has a high probability of finding an error. 

 

The tests themselves must exhibit a set of characteristics that achieve the goal of finding the most errors with a 

minimum of effort.  

  Testability  

 Operability  

 Observability.  

 Controllability.  

 Decomposability.  

 Simplicity  

 Stability.  

 Understandability.  



Page 128 

 

 

 

 

Test Characteristics  

 A good test has a high probability of finding an error. To achieve this goal, the tester must understand the 

software and attempt to develop a mental picture of how the software might fail. 

 A good test is not redundant. Testing time and resources are limited. There is no point in conducting a test 

that has the same purpose as another test. Every test should have a different purpose (even if it is subtly 

different). 

 A good test should be ―best of breed‖ .In a group of tests that have a similar intent, time and resource 

limitations may dictate the execution of only those tests that has the highest likelihood of uncovering a 

whole class of errors. 

 A good test should be neither too simple nor too complex. Although it is sometimes possible to combine a 

series of tests into one test case, the possible side effects associated with this approach may mask errors. 

In general, each test should be executed separately 

 

INTERNAL AND EXTERNAL VIEWS OF TESTING  

Any engineered product can be tested in one of two ways:  

(1) Knowing the specified function that a product has been designed to perform, tests can be conducted 

that demonstrate each function is fully operational while at the same time searching for errors in each 

function. :The first test approach takes an external view and is called black-box testing.  

(2) Knowing the internal workings of a product, tests can be conducted to ensure that ―all gears mesh,‖ 

that is, internal operations are performed according to specifications and all internal components have 

been adequately exercised. The second requires an internal view and is termed white-box testing.   

 

A: WHITE-BOX TESTING  

 

White-box is testing, sometimes called glass-box testing or structural testing, is a test- case design 

philosophy that uses the control structure described as part of component-level design to derive test cases. Using 

white-box testing methods, we can derive test cases that (1) guarantee that all independent paths within a 

module have been exercised at least once, (2) exercise all logical decisions on their true and false sides, (3) 

execute all loops at their boundaries and within their operational bounds, and (4) exercise internal data 

structures to ensure their validity.  

 

A1: BASIS PATH TESTING  

Basis path testing is a white-box testing technique which enables the test-case designer to derive a logical 

complexity measure of a procedural design and use this measure as a guide for defining a basis set of 

execution paths. Test cases derived to exercise the basis set are guaranteed to execute every statement in 

the program at least one time during testing.  



Page 129 

 

 

 

 

A.1.1 Flow Graph Notation  

The flow graph depicts logical control flow using the notation illustrated in Figure  

 

 

 To illustrate the use of a flow graph, consider the procedural design representation in Figure 23.2a . Here, 

a flowchart is used to depict program control structure.  

 Figure 23.2bmaps the flowchart into a corresponding flow  

 Referring to Figure 23.2b, each circle, called a flow graph node, represents one or more procedural 

statements.  

 A sequence of process boxes and a decision diamond can map into a single node. The arrows on the w 

graph, called edges or links, represent flow of control and are analogous to flowchart arrows.  

 An edge must terminate at a node, even if the node does not represent any procedural statements (e.g., see 

the flow graph symbol for the if-then-else construct)  

 Areas bounded by edges and nodes are called regions. When counting regions, we include the area 

outside the graph as a region.  

  



Page 130 

 

 

 

 

 

When compound conditions are encountered in a procedural design, the generation of a flow graph becomes 

slightly more complicated. A compound condition occurs when one or more Boolean operators (logical OR, 

AND, NAND, NOR) is present in a conditional statement. Referring to Figure, the program design language 

(PDL) segment translates into the flow graph shown. Note that a separate node is created for each of the 

conditions a and b in the statement IF a OR b. Each node that contains a condition is called a predicate node and 

is characterized by two or more edges emanating from it.  

 

 
A.1.2 Independent Program Paths  

An independent path is any path through the program that introduces at least one new set of processing 

statements or a new condition. When stated in terms of a flow graph, an independent path must move along at 

least one edge that has not been traversed before the path is defined. For example, a set of independent paths for 

the flow graph illustrated in Figure 23.2 b is not considered to be an independent path because it is simply a 

combination of already specified paths and does not traverse any new edges.  

Path 1: 1-11  

Path 2: 1-2-3-4-5-10-1-11  

Path 3: 1-2-3-6-8-9-10-1-11  

Path 4: 1-2-3-6-7-9-10-1-11  

Note that each new path introduces a new edge. The path 1-2-3-4-5-10-1-2-3-6-8-9-10-1-11  

Paths 1 through 4 constitute a basis set for the flow graph in Figure 23.2b . That is, if you can design tests to 

force execution of these paths (a basis set), every statement in the program will have been guaranteed to be 

executed at least one time and every condition will have been executed on its true and false sides. It should be 

noted that the basis set is not unique. In fact, a number of different basis sets can be derived for a given 

procedural design.  

Cyclomatic complexity is a software metric that provides a quantitative measure of the logical complexity of a 

program. When used in the context of the basis path testing method, the value computed for cyclomatic 

complexity defines the number of independent paths in the basis set of a program and provides you with an upper 

bound for the number of tests that must be conducted to ensure that all statements have been executed at least 

once.  

 

Cyclomatic complexity has a foundation in graph theory and provides you with an extremely useful software 

metric. Complexity is computed in one of three ways:  

 

1. The number of regions of the flow graph corresponds to the cyclomatic complexity.  

 

1. Cyclomatic complexity V( G) for a flow graph G is defined as V( G) =E-N+ 2 where E is the number 

of flow graph edges and N is the number of flow graph nodes.  

2. Cyclomatic complexity V( G) for a flow graph G is also defined as V( G) =P+1  

 

Where P is the number of predicate nodes contained in the flow graph G.  



Page 131 

 

 

 

 

Referring once more to the flow graph in Figure 23.2b , the cyclomatic complexity can be computed using each 

of the algorithms just noted:  

1. The flow graph has four regions.  

2. V( G) = 11 edges - 9 nodes + 2 = 4.  

3. V( G) = 3 predicate nodes + 1 = 4.  

 

Therefore, the cyclomatic complexity of the flow graph in Figure 23.2bis 4.  

More important, the value for V( G) provides you with an upper bound for the number of independent paths that 

form the basis set and, by implication, an upper bound on the number of tests that must be designed and executed 

to guarantee coverage of all program statements  

A.1.3 Graph Matrices  

A data structure, called a graph matrix, can be quite useful for developing a software tool that assists in basis path 

testing.  

A graph matrix is a square matrix whose size (i.e., number of rows and columns) is equal to the number of nodes 

on the flow graph. Each row and column corresponds to an identified node, and matrix entries correspond to 

connections (an edge) between nodes. A simple example of a flow graph and its corresponding graph matrix 

Figure below.  

Referring to the figure, each node on the flow graph is identified by numbers, while each edge is identified by 

letters. A letter entry is made in the matrix to correspond to a connection between two nodes. For example, node 

3 is connected to node 4 by edge b.  

To this point, the graph matrix is nothing more than a tabular representation of a flow graph. However, by adding 

a link weight to each matrix entry, the graph matrix can become a powerful tool for evaluating program control 

structure during testing. The link weight provides additional information about control flow. In its simplest form, 

the link weight is 1 (a connection  exists) or 0 (a connection does not exist). But link weights can be assigned 

other, more interesting properties:  

 

• The probability that a link (edge) will be executed.  

• The processing time expended during traversal of a link  

• The memory required during traversal of a link  

• The resources required during traversal of a link.  

 
2. CONTROL STRUCTURE TESTING  

The basis path testing technique is one of a number of techniques for control structure  

testing. Condition testing is a test-case design method that exercises the logical conditions  

contained in a program module. Data flow testing selects test paths of a program according to the locations of 

definitions and uses of variables in the program.  



Page 132 

 

 

 

 

Loop testing is a white-box testing technique that focuses exclusively on the validity of loop constructs. Four 

different classes of loops can be defined: simple loops, concatenated loops, nested loops, and unstructured loops  

 



Page 133 

 

 

 

 

Simple Loops. The following set of tests can be applied to simple loops, where n is the maximum number of 

allowable passes through the loop.  

1. Skip the loop entirely.  

2. Only one pass through the loop.  

3. Two passes through the loop.  

4. m passes through the loop where m < n.  

5. n - 1, n, n + 1 passes through the loop.  

 

Nested Loops. If we were to extend the test approach for simple loops to nested loops, the number of possible 

tests would grow geometrically as the level of nesting increases. Beizer suggests an approach that will help to 

reduce the number of tests:  

1. Start at the innermost loop. Set all other loops to minimum values.  

2. Conduct simple loop tests for the innermost loop while holding the outer loops at their minimum iteration 

parameter (e.g., loop counter) values. Add other tests for out-of-range or excluded values.  

3. Work outward, conducting tests for the next loop, but keeping all other outer loops at minimum values 

and other nested loops to ―typical‖ values.  
     Continue until all loops have been tested.  

 

Concatenated Loops. Concatenated loops can be tested using the approach defined for simple loops, if each of 

the loops is independent of the other. However, if two loops are concatenated and the loop counter for loop 1 is 

used as the initial value for loop 2, then the loops are not independent. When the loops are not independent, the 

approach applied to nested loops is recommended.  

Unstructured Loops. Whenever possible, this class of loops should be redesigned to reflect the use of the 

structured programming constructs  

 

 

3. BLACK-BOX TESTING  

 

Black-box testing, also called behavioral testing or functional testing focuses on the functional requirements 

of the software. That is, black-box testing techniques enable you to derive sets of input conditions that will fully 

exercise all functional requirements for a program  

 Black-box testing attempts to find errors in the following categories: 

 

 (1) incorrect or missing functions,  

 (2) interface errors, 

 (3) errors in data structures or external database access, 

 (4) behavior or performance errors, and 

 (5) initialization and termination errors.  

 

 

 

 

 



Page 134 

 

 

 

 

 Black-box testing is focused on the information domain. Black-box tests are designed to validate 

functional requirements without regard to the internal workings of a program.  

 Black-box testing techniques focus on the information domain of the software, deriving test cases by 

partitioning the input and output domain of a program in a manner that provides thorough test coverage.  

 

Equivalence partitioning divides the input domain into classes of data that are likely to exercise a specific 

software function.  

Boundary value analysis probes the program‘s ability to handle data at the limits of acceptability.  

Orthogonal array testing provides an efficient, systematic method for testing systems with small numbers of 

input parameters.  

Model-based testing uses elements of the requirements model to test the behavior of an application.  

Graph-Based Testing Methods  

The first step in black-box testing is to understand the objects 5 that are modeled in software and the relationships 

that connect these objects. Once this has been accomplished, the next step is to define a series of tests that verify 

―all objects have the expected relationship to one another‖ . Stated in another way, software testing begins by 

creating a graph of important objects and their relationships and then devising a series of tests that will cover the 

graph so that each object and relationship is exercised and errors are uncovered.  

 
To accomplish these steps, you begin by creating a graph—a collection of nodes that represent objects, links that 

represent the relationships between objects, node weights that describe the properties of a node (e.g., a specific 

data value or state behavior), and link weights that describe some characteristic of a link.  

 

The symbolic representation of a graph is shown in Figure a . Nodes are represented as circles connected by links 

that take a number of different forms. A directed link (represented by an arrow) indicates that a relationship 

moves in only one direction. A bidirectional link, also  

called a symmetric link, implies that the relationship applies in both directions. Parallel links are used when a 

number of different relationships are established between graph nodes.  



Page 135 

 

 

 

 

As a simple example, consider a portion of a graph for a word-processing application ( Figure 23.8b ) where 

Object #1 = newFile (menu selection) Object #2 = documentWindow Object #3 = document Text Referring to 

the figure, a menu select on newFile generates a document window. The node weight of documentWindow 

provides a list of the window attributes that are to be expected when the window is generated. The link weight 

indicates that the window must be generated in less than 1.0 second. An undirected link establishes a symmetric 

relationship between the newFile menu selection and documentText, and parallel links indicate relationships 

between documentWindow and documentText.  

 

we can then derive test cases by traversing the graph and covering each of the relationships shown. These test 

cases are designed in an attempt to find errors in any of the relationships. Beizer describes a number of 

behavioral testing methods that can make use of graphs:  

 

 Transaction flow modeling. The nodes represent steps in some transaction (e.g., the steps required to 

make an airline reservation using an online service), and the links represent the logical connection 

between steps  

 Finite state modeling. The nodes represent different user-observable states of the software (e.g., each of 

the ―screens‖ that appear as an order entry clerk takes a phone order), and the links represent the 

transitions that occur to move from state to state input).  

 Data flow modeling. The nodes are data objects, and the links are the transformations that occur to 

translate one data object into another  

 Timing modeling. The nodes are program objects, and the links are the sequential connections between 

those objects. Link weights are used to specify the required execution times as the program executes.  

 

2 Equivalence Partitioning  

Equivalence partitioning is a black-box testing method that divides the input domain of a program into classes of 

data from which test cases can be derived.  

Test-case design for equivalence partitioning is based on an evaluation of equivalence classes for an input 

condition. Using if a set of objects can be linked by relationships that are symmetric, transitive, and reflexive, an 

equivalence class is present .  

An equivalence class represents a set of valid or invalid states for input conditions.  



Page 136 

 

 

 

 

Typically, an input condition is either a specific numeric value, a range of values, a set of related values, or a 

Boolean condition.  

Equivalence classes may be defined according to the following guidelines:  

 

1. If an input condition specifices a range, one valid and two invalid equivalence classes are defined.  

2. If an input condition requires a specific value, one valid and two invalid equivalence classes are defined.  

3. If an input condition specifies a member of a set, one valid and one invalid equivalence class are defined.  

4. If an input condition is Boolean, one valid and one invalid class are defined.  

 

By applying the guidelines for the derivation of equivalence classes, test cases for each input domain data item 

can be developed and executed. Test cases are selected so that the largest number of attributes of an equivalence 

class are exercised at once.  

 

3 Boundary Value Analysis  

 A greater number of errors occurs at the boundaries of the input domain rather than in the ―center.‖ It is 

for this reason that boundary value analysis (BVA) has been developed as a testing technique.  

 Boundary value analysis leads to a selection of test cases that exercise bounding values.  

 Boundary value analysis is a test-case design technique that complements equivalence partitioning. 

Rather than selecting any element of an equivalence class, BVA leads to the selection of test cases at the 

―edges‖ of the class.  

 

Guidelines for BVA are similar in many respects to those provided for equivalence partitioning:  

 

1. If an input condition specifies a range bounded by values a and b, test cases should be designed with values a 

and b and just above and just below a and b.  

2. If an input condition specifies a number of values, test cases should be developed that exercise the minimum 

and maximum numbers. Values just above and below minimum and maximum are also tested.  

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a temperature versus pressure table is 

required as output from an engineering analysis program. Test cases should be designed to create an output report 

that produces the maximum (and minimum) allowable number of table entries.  

4. If internal program data structures have prescribed boundaries (e.g., a table has a defined limit of 100 entries), 

be certain to design a test case to exercise the data structure at its boundary.  



Page 137 

 

 

 

 

4 Orthogonal Array Testing  

 
Orthogonal array testing can be applied to problems in which the input domain is relatively small but too large to 

accommodate exhaustive testing.  

The orthogonal array testing method is particularly useful in finding region faults—an error category associated 

with faulty logic within a software component.  

To illustrate the difference between orthogonal array testing and more conventional ―one input item at a time‖ 

approaches, consider a system that has three input items, X, Y, and Z.  

Each of these input items has three discrete values associated with it. There are 33 = 27 possible test cases. 

Phadke suggests a geometric view of the possible test cases associated with X, Y, and Z illustrated in Figure . 

Referring to the figure, one input item at a time may be varied in sequence along each input axis. This results in 

relatively limited coverage of the input domain (represented by the left-hand cube in the figure).  

 
When orthogonal array testing occurs, an L9 orthogonal array of test cases is created. The L9 orthogonal array 

has a ―balancing property‖. That is, test cases (represented by dark dots in the figure) are ―dispersed uniformly 

throughout the test domain,‖ as illustrated in the right-hand cube in Figure . Test coverage across the input 

domain is more complete.  

To illustrate the use of the L9 orthogonal array, consider the send function for a fax application. Four parameters, 

P1, P2, P3, and P4, are passed to the send function. Each takes on three discrete values. For example, P1 takes on 

values:  

P1 = 1, send it now  

P1 = 2, send it one hour later P1 = 3, send it after midnight  

P2, P3, and P4 would also take on values of 1, 2 and 3, signifying other send functions.  

If a ―one input item at a time‖ testing strategy were chosen, the following sequence of tests  



Page 138 

 

 

 

 

(P1, P2, P3, P4) would be specified: (1, 1, 1, 1), (2, 1, 1, 1), (3, 1, 1, 1), (1, 2, 1, 1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 

3, 1), (1, 1, 1, 2), and (1, 1, 1, 3). But these would uncover only single mode faults [Pha97], that is, faults that are 

triggered by a single parameter.  

Given the relatively small number of input parameters and discrete values, exhaustive testing is possible. The 

number of tests required is 3 4 5 81, large but manageable. All faults associated with data item permutation 

would be found, but the effort required is relatively high.  

The orthogonal array testing approach enables you to provide good test coverage with far fewer test cases than 

the exhaustive strategy. An L9 orthogonal array for the fax send function is illustrated in Figure above assesses 

the result of tests using the L9 orthogonal array in the following manner:  

 

 Detect and isolate all single mode faults. A single mode fault is a consistent problem with any level of 

=any single parameter. For example, if all test cases of factor P1 1 cause an error condition, it is a single 

mode failure. In this example tests 1, 2 and 3 [ Figure 23.10 ] will show errors. By analyzing the 

information about which tests show errors, one can identify which parameter values cause the fault. In 

this example, by noting that tests 1, 2, and 3 cause an error, one can isolate [logical processing associated 

with ―send it now‖ (P1 = 1)] as the source of the error. Such an isolation of fault is important to fix the 

fault.  

 Detect all double mode faults. If there exists a consistent problem when specific levels of two 

parameters occur together, it is called a double mode fault. Indeed, a double mode fault is an indication of 

pair wise incompatibility or harmful interactions between two test parameters.  

 Multimode  faults. Orthogonal arrays [of the type shown] can assure the detection of only single and 

double mode faults. However, many multi-mode faults are also detected by these tests.  

 

 

MODEL -BASED TESTING  
 

Model-based testing (MBT) is a black-box testing technique that uses information contained in the requirements 

model as the basis for the generation of test cases  

 

In many cases, the model-based testing technique uses UML state diagrams, an element of the behavioral model , 

as the basis for the design of test cases.  

The MBT technique requires five steps:  

 



Page 139 

 

 

 

 

1. Analyze an existing behavioral model for the software or create one. Recall that a behavioral model 

indicates how software will respond to external events or stimuli. To create the model, you should perform the 

steps (1) evaluate all use cases to fully understand the sequence of interaction within the system, (2) identify 

events that drive the interaction sequence and understand how these events relate to specific objects, (3) create a 

sequence for each use case, (4) build a UML state diagram for the system and (5) review the behavioral model to 

verify accuracy and consistency.  

 

2. Traverse the behavioral model and specify the inputs that will force the software to make the transition 

from state to state. The inputs will trigger events that will cause the transition to occur.  

 

3. Review the behavioral model and note the expected outputs as the software makes the transition from 

state to state. Recall that each state transition is triggered by an event and that as a consequence of the transition, 

some function is invoked and outputs are created. For each set of inputs (test cases) you specified in step 2, 

specify the expected outputs as they are characterized in the behavioral model.  

 

4. Execute the test cases. Tests can be executed manually or a test script can be created and executed using a 

testing tool.  

 

5. Compare actual and expected results and take corrective action as required.  

MBT helps to uncover errors in software behavior, and as a consequence, it is extremely useful when testing 

event-driven applications.  

 

TESTING DOCUMENTATION  
Documentation testing can be approached in two phases. The first phase, technical review examines the 

document for editorial clarity. The second phase, live test, uses the documentation in conjunction with the actual 

program.  

Surprisingly, a live test for documentation can be approached using techniques that are analogous to many of the 

black-box testing methods discussed earlier. Graph-based testing can be used to describe the use of the program; 

equivalence partitioning and boundary value analysis can be used to define various classes of input and 

associated interactions. MBT can be used to ensure that documented behavior and actual behavior coincide. 

Program usage is then tracked through the documentation.  



Page 140 

 

 

 

 

Test automation  

 

 Automated testing (Figure above) is based on the idea that tests should be executable. 

 An executable test includes the input data to the unit that is being tested, the expected result, and a check 

that the unit returns the expected result. 

 we run the test and the test passes if the unit returns the expected result. Normally, we should develop 

hundreds or thousands of executable tests for a software product. 

 The development of automated testing frameworks, such as JUnit for Java in the 1990s, reduced the effort 

involved in developing executable tests. 

 Testing frameworks are now available for all widely used programming languages. A suite of hundreds of 

unit tests, developed using a framework, can be run on a desktop computer in a few seconds. A test report 

shows the tests that have passed and failed. 

 Testing frameworks provide a base class, called something like ―TestCase‖ that is used by the testing 

framework. To create an automated test, you define your own test class as a subclass of this TestCase 

class. Testing frameworks include a way of running all of the tests defined in the classes that are based on 

TestCase and reporting the results of the tests. 

 

It is good practice to structure automated tests in three parts:  

1. Arrange You set up the system to run the test. This involves defining the test parameters and, if necessary, 

mock objects that emulate the functionality of code that has not yet been developed.  

2. Action You call the unit that is being tested with the test parameters.  

3. Assert You make an assertion about what should hold if the unit being tested has executed successfully. If we 

use equivalence partitions to identify test inputs, we should have several automated tests based on correct and 

incorrect inputs from each partition.  

 

  the point of automated testing is to avoid the manual checking of test outputs, we can‘t realistically 

discover test errors by running the tests. Therefore, we have to use two approaches to reduce the 

chances of test errors:  

o Make tests as simple as possible. The more complex the test, the more likely that it will be buggy. 

The test condition should be immediately obvious when reading the code.  

Review all tests along with the code that they test. As part of the review process, someone apart 

from the test programmer should check the tests for correctness.  

 Regression testing is the process of re-running previous tests when we make a change to a system.  

 This testing checks that the change has not had unexpected side effects. The code change may have 

inadvertently broken existing code, or it may reveal bugs that were undetected in earlier tests.  



Page 141 

 

 

 

 

 If we use automated tests, regression testing takes very little time. Therefore, after we make any change to 

your code, even a very minor change, we should always re-run all tests to make sure that everything 

continues to work as expected.  

 

 Unit tests are the easiest to automate, so the majority of your tests should be unit tests. Mike Cohn, who 

first proposed the test pyramid , suggests that 70% of automated tests should be unit tests, 20% feature 

tests (he called these service tests), and 10% system tests (UI tests).  

 The implementation of system features usually involves integrating functional units into components and 

then integrating these components to implement the feature. If you have good unit tests, you can be 

confident that the individual functional units and components that implement the feature will behave as 

you expect.  

 Generally, users access features through the product‘s graphical user interface (GUI). However, GUI-

based testing is expensive to automate so it is best to use an alternative feature testing strategy.  

 

 

 

 This involves designing your product so that its features can be directly accessed through an API, not just 

from the user interface. The feature tests can then access features directly through the API without the 

need for direct user interaction through the system‘s GUI (Figure above).  

 Accessing features through an API has the additional benefit that it is possible to re- implement the GUI 

without changing the functional components of the software.  

 For example, a series of API calls may be required to implement a feature that allows a user to share a 

document with another user by specifying their email address.  

 These calls collect the email address and the document identification information, check that the access 

permissions on the document allow sharing, check that the specified email address is valid and is a 

registered system user, and add the document to the sharing user‘s workspace  



Page 142 

 

 

 

 

 
When these calls have been executed, a number of conditions should hold: 

  The status of the document is ―shared.‖  

 The list of users sharing the document includes the specified email address.  

 There have been no deletions from the list of users sharing the document.  

 The shared document is visible to all users in the sharing list.  

 

 

 

 

 

 

 

Manual system testing, when testers have to repeat sequences of actions, is boring and prone to errors. In some 

cases, the timing of actions is important and is practically impossible to repeat consistently. To avoid these 

problems, testing tools have been developed to record a series of actions and automatically replay them when a 



Page 143 

 

 

 

 

system is retested (Figure 9.7).  

 

 Interaction recording tools record mouse movements and clicks, menu selections, keyboard inputs, and so 

on. They save the interaction session and can replay it, sending commands to the application and 

replicating them in the user‘s browser interface. These tools also provide scripting support so that you can 

write and execute scenarios expressed as test scripts. This is particularly useful for cross-browser testing, 

where you need to check that your software works in the same way with different browsers. 

 Automated testing is one of the most important developments in software engineering 

 

Test-driven development  

 

 Test-driven development (TDD) is an approach to program development that is based on the general idea 

that we should write an executable test or tests for code that are writing before you write the code. 



Page 144 

 

 

 

 

 TDD was introduced by early users of the Extreme Programming agile method, but it can be used with 

any incremental development approach. Figure 9.8 is a model of the test-driven development 

process. 

 
 

 Assume that we  

 Test-driven development relies on automated testing. Every time we add some functionality, we develop 

 

 All of the tests in the test suite must pas  

 Test-driven development is an approach in which executable tests are written before the code. Code is 

 

 

 A disadvantage of test-driven development is that programmers focus on the details of passing tests rather than 

considering the broader structure of their code and algorithms used.  

 

 

 

 

 

The benefits of test-driven development are:  

1. It is a systematic approach to testing in which tests are clearly linked to section of the program code.  

2. The tests act as a written specification for the program code. In principle at least, it should be possible 

to understand what the program does by reading the tests..  

3. Debugging is simplified because, when a program failure is observed, you  

can immediately link this to the last increment of code that you added to the system.  



Page 145 

 

 

 

 

4. It is argued that TDD leads to simpler code, as programmers only write code that‘s necessary to pass 

tests. They don‘t over engineer their code with complex features that aren‘t needed.  

 



Page 146 

 

 

 

 

DevOps and Code Management  

 The ultimate goal of software product development is to release a product to customers. Traditionally, 

separate teams were responsible for software development, software release, and software support (Figure 

1).  

 The development team passed a ―final‖ version of the software to a release team. That team then built a 

release version, tested it, and prepared release documentation before releasing the software to customers.  

 
Fig 1 Development, release, and support 

 A third team provided customer support. The original development team was sometimes responsible for 

implementing software changes. Alternatively, the software may have been maintained by a separate 

maintenance team.  

 In these processes, communication delays between the groups were inevitable.  

 Development and operations engineers used different tools, had different skill sets, and often didn‘t 

understand the other‘s problems.  

 Even when an urgent bug or security vulnerability was identified, it could take several days for a new 

release to be prepared and pushed to customers.  

 

 Many companies still use this traditional model of development, release, and support.  

 However, more and more companies are using an alternative approach called DevOps.  

 DevOps (development + operations) integrates development, deployment, and support, with a single team 

responsible for all of these activities (Figure 2).  

 Three factors led to the development and widespread adoption of DevOps:  

1. Agile software engineering reduced the development time for software, but the traditional release 

process introduced a bottleneck between development and deployment.  

2. Amazon re-engineered their software around services and introduced an approach in which a service 

was both developed and supported by the same team.  

3. It became possible to release software as a service, running on a public or private cloud. Software 

products did not have to be released to users on physical media or downloads.  



Page 147 

 

 

 

 

 
Fig 2 DevOps DevOps Principle  

 
Table 1 DevOps principles  

 
Table 2 Benefits of DevOps  

 

1: CODE MANAGEMENT  

 DevOps depends on the source code management system that is used by the entire team.  

 Code management is a set of software-supported practices used to manage an evolving codebase.  

 We need code management to ensure that changes made by different developers do not interfere with 

each other and to create different product versions.  



Page 148 

 

 

 

 

 Code management tools make it easy to create an executable product from its source code files and to run 

automated tests on that product.  

 Source code management, combined with automated system building, is critical for professional software 

engineering.  

 In companies that use DevOps, a modern code management system is a fundamental requirement for 

―auto- mating everything.‖ Not only does it store the project code that is ultimately deployed, but it also 

stores all other information that is used in DevOps processes.  

 DevOps automation and measurement tools all interact with the code management system (Figure 3).  

 
Fig 3: Code management and DevOps 

 

 

1.1 Fundamentals of source code management  

 
Source code management systems are designed to manage an evolving project codebase to allow different 

versions of components and entire systems to be stored and retrieved.  

Developers can work in parallel without interfering with each other and they can integrate their work with that 

from other developers.  

The code management system provides a set of features that support four general areas:  

1. Code transfer Developers take code into their personal file store to work on it; then they return it to the shared 

code management system.  

2. Version storage and retrieval Files may be stored in several different versions, and specific versions of these 

files can be retrieved.  

3. Merging and branching Parallel development branches may be created for concurrent working. Changes made 

by developers in different branches may be merged.  

4. Version information about the different versions maintained in the system may be stored and retrieved. All 

source code management systems have the general form shown in Figure 3, with a shared repository and a set of 



Page 149 

 

 

 

 

features to manage the files in that repository:  

 

1. All source code files and file versions are stored in the repository, as are other artifacts such as configuration 

files, build scripts, shared libraries, and versions of tools used. The repository includes a database of information 

about the stored files, such as version information, information about who has changed the files, what changes 

were made at what times and so on.  

2. The source code management features transfer files to and from the repository and update the information 

about the different versions of files and their relationships. Specific versions of files and information about these 

versions can always be retrieved from the repository.  

 
Table 4 Features of source code management systems 

 

 

 

 

 In 2005, Linus Torvalds, the developer of Linux, revolutionized source code management by developing 

a distributed version control system (DVCS) called Git to manage the code of the Linux kernel.  

 Git was geared to supporting large-scale open-source development.  

 It took advantage of the fact that storage costs had fallen to such an extent that most users did not have to 

be concerned with local storage management.  

 Instead of only keeping the copies of the files that users are working on, Git maintains a clone of the 

repository on every user‘s computer (Figure 5).  

 A fundamental concept in Git is the ―master branch,‖ which is the current master version of the software 

that the team is working on.  



Page 150 

 

 

 

 

we create new versions by creating a new branch, In Figure 5, we can see that two branches have been 

created in addition to the master branch. When users request a repository clone, they get a copy of the 

master branch that they can work on independently.  

  
Figure 5 Repository cloning in Git 

 
Git and other distributed code management systems have several advantages over centralized systems:  

1. Resilience Everyone working on a project has their own copy of the repository. If the shared repository 

is damaged or subjected to a cyber-attack, work can continue, and the clones can be used to restore the 

shared repository. People can work offline if they don‘t have a network connection.  

2. Speed committing changes to the repository is a fast, local operation and does not need data to be 

transferred over the network.  

3. Flexibility Local experimentation is much simpler. Developers can safely try different approaches 

without exposing their experiments to other project members. With a centralized system, this may only be 

possible by working outside the code management system.  



Page 151 

 

 

 

 

 
Figure 6 Git repositories 

 Most software product companies now use Git for code management.  

 For teamwork, Git is organized around the notion of a shared project repository and private clones of that 

repository held on each developer‘s computer (Figure 6).  

 A company may use its own server to run the project repository. However, many companies and 

individual developers use an external Git repository provider.  

 Several Git repository hosting companies, such as Github and Gitlab, host thousands of repositories on 

the cloud.  
 

Figure 6 shows four project repositories on Github, RP1–RP4. RP1 is the repository for project 1, RP2 is the 

repository for project 2, and so on. Each of the developers on each project is identified by a letter (a, b, c, etc.) 

and has an individual copy of the project repository.  

Developers may work on more than one project at a time, so they may have copies of several Git repositories on 

their computer.  

For example, developer a works on Project 1, Project 2, and Project 3, so has clones of RP1, RP2, and RP3.  

 

 

 

 

 

 



Page 152 

 

 

 

 

2: Dev Ops automation 
Historically, the processes of integrating a system from independently developed parts, deploying that 

system in a realistic testing environment, and releasing it were time consuming and expensive. By using 

DevOps with automated support, however, we can dramatically reduce the time  and costs for integration, 

deployment, and delivery.  

 ―Everything that can be should be automated‖ is a fundamental principle of DevOps.  

 In addition to reducing the costs and time required for integration, deployment, and delivery, automation 

makes these processes more reliable and reproducible.  

  
Figure 3 showed the four aspects of DevOps automation 

 

Table Aspects of DevOps automation  

2.1 Continuous integration  

 System integration (system building) is the process of gathering all of the elements required in a working 

system, moving them into the right directories, and putting them together to create an operational system. 

This involves more than compiling the system.  

 Continuous integration (CI) means creating an executable version of a software system whenever a 

change is made to the repository. The CI tool is triggered when a file is pushed to the repo. It builds the 

system and runs tests on your development computer or project integration server  

 



Page 153 

 

 

 

 

Figure below Continuous integration  

 Continuous integration simply means that an integrated version of the system is created and tested every 

time a change is pushed to the system‘s shared code repository.  

 

 On completion of the push operation, the repository sends a message to an integration server to build a 

new version of the product (Figure 9).  

 The squares in Figure 9 are the elements of a continuous integration pipeline that is triggered by a 

repository notification that a change has been made to the master branch of the system.  

 
Figure: Local integration 

 

  In a continuous integration environment, developers have to make sure that they don‘t ―break the build.‖ 

Breaking the build means pushing code to the project repository, which when integrated, causes some of 

the system tests to fail. This holds up other developers. If this happens, our priority is to discover and fix 

the problem so that normal development can continue.  

 To avoid breaking the build, we should always adopt an ―integrate twice‖ approach to system integration. 

We should integrate and test on our own computer before pushing code to the project repository to trigger 

the integration server (Figure10).  

 

 

 

 



Page 154 

 

 

 

 

 The advantage of continuous integration compared to less frequent integration is that it is faster to find 

and fix bugs in the system. If we make a small change and some system tests then fail, the problem 

almost certainly lies in the new code that we have pushed to the project repo. we can focus on this code to 

find the bug that‘s causing the problem.  

 If we continuously integrate, then a working system is always available to the whole team. This can be 

used to test ideas and to demonstrate the features of the system to management and customers. 

Furthermore, continuous integration creates a ―quality culture‖ in a development team. Team members 

want to avoid the stigma and disruption of breaking the build. They are likely to check their work 

carefully before pushing it to the project repo.  

 

Figure  A dependency model 

 Continuous integration is effective only if the integration process is fast and developers do not have to 

wait for the results of their tests of the integrated system.  

 However, some activities in the build process, such as populating a database or compiling hundreds of 

system files, are inherently slow. It is therefore essential to have an automated build process that 

minimizes the time spent on these activities.  

 To understand incremental system building, you need to understand the concept of dependencies.  

 Figure above is a dependency model that shows the dependencies for test execution.  



Page 155 

 

 

 

 

 An upward-pointing arrow means ―depends on‖ and shows the information required to complete the task 

shown in the rectangle at the base of the model. Figure 11 therefore shows that running a set of system 

tests depends on the existence of executable object code for both the program being tested and the system 

tests.  

 In turn, these depend on the source code for the system and the tests that are compiled to create the object 

code.  

 The first time we integrate a system, the incremental build system compiles all the source code files and 

executable test files. It creates their object code equivalents, and the executable tests are run. 

Subsequently, however, object code files are created only for new and modified tests and for source code 

files that have been modified.  

 

2.2 Continuous delivery and deployment  

 Continuous delivery means that, after making changes to a system, we ensure that the changed system is 

ready for delivery to customers.  

 This means that you have to test it in a production environment to make sure that environmental factors 

do not cause system failures or slow down its performance.  

 Continuous delivery does not mean that the software will necessarily be released immediately to users for 

deployment.  

 
Figure 12 Continuous delivery and deployment 

 Figure above  illustrates a summarized version of this deployment pipeline, showing the stages involved 

in continuous delivery and deployment.  

 After initial integration testing, a staged test environment is created. This is a replica of the actual 

production environment in which the system will run.  

 The system acceptance tests, which include functionality, load, and performance tests, are then run to 

check that the software works as expected. 



Page 156 

 

 

 

 

Table 6 

Benefits of continuous deployment 

2.3 Infrastructure as code  

 Rather than manually updating the software on a company‘s servers, the process can be automated using a 

model of the infrastructure written in a machine-process able language.  

 Configuration management (CM) tools, such as Puppet and Chef, can automatically install software and 

services on servers according to the infrastructure definition. The CM tool accesses a master copy of the 

software to be installed and pushes this to the servers being provisioned (Figure 13).  

 When changes have to be made, the infrastructure model is updated and the CM tool makes the change to 

all servers.  

 Defining our software infrastructure as code is obviously relevant to products that are delivered as 

services.  



Page 157 

 

 

 

 

 The product provider has to manage the infrastructure of their services on the cloud. However, it 

is also relevant if software is delivered through downloads.  

 
Figure : Infrastructure as code 

 

Defining our infrastructure as code and using a configuration management system solve two key problems of 

continuous deployment: 

 

1. Our testing environment must be exactly the same as your deployment environment. If you change the 

deployment environment, you have to mirror those changes in your testing environment.  

2. When we change a service, we have to be able to roll that change out to all of our servers quickly and 

reliably. If there is a bug in our changed code that affects the system‘s reliability, we have to be able to 

seamlessly roll back to the older system.  

The business benefits of defining our infrastructure as code are lower costs of system management and lower 

risks of unexpected problems arising when infrastructure changes are implemented. These benefits stem from 

four fundamental characteristics of infrastructure as code, shown in Table 7  

 
Table 10.7 Characteristics of infrastructure as code 

 

 

 

 

 

 



Page 158 

 

 

 

 

3 DevOps measurement  

 
After you have adopted DevOps, you should try to continuously improve your DevOps process to achieve 

faster deployment of better-quality software. This means you need to have a measurement program in 

place in which you collect and analyze product and process data. By making measurements over time, 

you can judge whether or not you have an effective and improving process  

Measurements about software development and use fall into four categories:  

1. Process measurements :collect and analyze data about your development, testing, and deployment 

processes.  

2. Service measurements ;collect and analyze data about the software‘s performance, reliability, and 

acceptability to customers.  

3. Usage measurements : collect and analyze data about how customers use your product.  

4. Business success measurements : collect and analyze data about how your product contributes to the 

overall success of the business.  

 

 

 

  



Page 159 

 

 

 

 

 

 

MODULE 4 

NOTES 

 
SOFTWARE 

PROJECT 

MANAGEMENT 

 

 

 

 

 



 Page 160 

 

  

 

 

 

 

 

 Software project management is an essential part of software engineering. 

 The success criteria for project management obviously vary from project to 
project, but, for most projects, important goals are: 

1. to deliver the software to the customer at the agreed time; 

2. to keep overall costs within budget 

3. to deliver software that meets the customer‘s expectations; 

4. to maintain a coherent and well-functioning development team. 

 Software engineering is different from other types of engineering in a number 
of ways: 

1. The product is intangible. 

2. Large software projects are often ―one-off‖ projects. 

3. Software processes are variable and organization-specific. 

 

 It is impossible to write a standard job description for a software project 
manager. 

 Some of the most important factors that affect how software projects 

are managed are: 

1. Company size 

2. Software customers 

3. Software size 

4. Software type 

5. Organizational culture 

6. Software development processes 

 The fundamental project management activities that are common to all 
organizations: 

1. Project planning  Project managers are responsible for planning, estimating, 
and scheduling project development and assigning people to tasks. 

2. Risk management Project managers have to assess the risks that may 
affect a project, monitor these risks, and take action when problems arise. 

3. People management Project managers are responsible for managing a team 
of people. They have to choose people for their team and establish ways of 
working that lead to effective team performance. 

4. Reporting Project managers are usually responsible for reporting on the progress 
of a project to customers and to the managers of the company developing the 
software. 

5. Proposal writing The first stage in a software project may involve writing a 
proposal to win a contract to carry out an item of work. The proposal describes 
the objectives of the project and how it will be carried out. It usually includes 
cost and schedule estimates and justifies why the project contract should be 
awarded to a particular organization or a team 

 

 

 



 Page 161 

 

  

 

 

 

RISK MANAGEMENT 

 Risk management is one of the most important jobs for a project manager. 

 Risk management involves anticipating risks that might affect the project schedule or 
the quality of the software being developed, and then taking action to avoid these risks. 

 Risks can be categorized according to type of risk (technical, 
organizational, etc.) 

 

 Classification of risks according to what these risks affect: 

1.  
project risk is the loss of an experienced system architect. 

2. Product risks  affect the quality or performance of the software 
being developed. An example of a product risk is the failure of a 
purchased component to perform as expected. 

3. Business risks  affect the organization developing or 
procuring the software. For example, a competitor introducing 
a new product is a business risk. 

 For large projects, you should record the results of the risk analysis in a risk register 
along with a consequence analysis. This sets out the consequences of the risk for the 
project, product, and business. 

 

 
 

 

Fig: Examples of common project, product, and business risks 

 
  



 Page 162 

 

  

 Effective risk management makes it easier to cope with problems and to ensure that these 
do not lead to unacceptable budget or schedule slippage. 

 For small projects, formal risk recording may not be required, but the project manager 
should be aware of them. 

 The specific risks that may affect a project depend on the project and the organizational 
environment in which the software is being developed. 

 Software risk management is important because of the inherent uncertainties 

in software development. 

 
 An outline of the process of risk management is presented in Figure. It 

involves several stages: 

1. Risk identification  You should identify possible project, product, and 
business risks. 

2. Risk analysis  You should assess the likelihood and consequences of these 
risks. 

3. Risk planning  You should make plans to address the risk, either by 
avoiding it or by minimizing its effects on the project. 

4. Risk monitoring  plans 
for risk mitigation and revise these plans when you learn more about the 
risk. 

The risk management process is an iterative process that 
continues throughout a project. 

 

 

 

 
 

 

 Fig: The Risk Management Process 
 

  

  



 Page 163 

 

  

 

 

Risk Identification: 

 Risk identification is the first stage of the risk management process. 

 It is concerned with identifying the risks that could pose a major threat to 
the software engineering process, the software being developed, or the 
development organization. 

 Risk identification may be a team process in which a team gets together 
to brainstorm possible risks. 

 As a starting point for risk identification, a checklist of different types of risk may be 
used. 

 6 types of risk may be included in a risk checklist: 

1. Estimation risks  arise from the management estimates of the resources 
required to build the system. 

2. Organizational risks  arise from the organizational environment 
where the software is being developed. 

3. People risks  are associated with the people in the development team. 

4. Requirements risks  come from changes to the customer requirements 
and the process of managing the requirements change. 

5. Technology risks  come from the software or hardware technologies that 
are used to develop the system. 

6. Tools risks  come from the software tools and other support 

software used to develop the system. 

 

 



 Page 164 

 

  

  

Risk Analysis: 

 During the risk analysis process, you have to consider each identified risk and make a 

judgment about the probability and seriousness of that risk. 

 It is not possible to make precise, numeric assessment of the probability and seriousness 
of each risk. 

 You should assign the risk to one of a number of bands: 

1. The probability of the risk might be assessed as insignificant, low, moderate, high, or 

very high. 

2. The effects of the risk might be assessed as catastrophic (threaten the 
survival of the project), serious (would cause major delays), tolerable 
(delays are within allowed contingency), or insignificant. 

 You may then tabulate the results of this analysis process using a table ordered according 

to the seriousness of the risk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Page 165 

 

  

 

 

  Both the probability and the assessment of the effects of a risk may change as more 
information about the risk becomes available and as risk management plans are 
implemented. You should therefore update this table during each iteration of the risk 
management process. 

 Once the risks have been analyzed and ranked, you should assess which of 
these risks are most significant. 

 In general, catastrophic risks should always be considered, as should all serious risks 
that have more than a moderate probability of occurrence. 

 

Risk Planning: 

 The risk planning process develops strategies to manage the key risks that threaten the 
project. 

 For each risk, you have to think of actions that you might take to minimize the 
disruption to the project if the problem identified in the risk occurs. 

 You should also think about the information that you need to collect while monitoring 
the project so that emerging problems can be detected before they become serious. 

 In risk planning, you have to ask ―what-if‖ questions that consider both individual 
risks, combinations of risks, and external factors that affect these risks. For example, 
questions that you might ask are: 

1What if several engineers are ill at the same time? 

1. What if an economic downturn leads to budget cuts of 20% for the project? 

2. What if the performance of open-source software is inadequate and the 

only expert on that open-source software leaves? 

3. What if the company that supplies and maintains software 
components goes out of business? 

4. What if the customer fails to deliver the revised requirements as predicted? 

Based on the answers to these ―what-if‖ questions, you may devise strategies for managing the  risks 
 The possible risk management strategies fall into 3 categories: 

1. Avoidance strategies  
probability that the risk will arise is reduced. An example of a risk avoidance 
strategy is the strategy for dealing with defective components. 

2. Minimization strategies  
impact of the risk is reduced. An example of a risk minimization strategy 
is the strategy for staff illness. 

3. Contingency plans  
prepared for the worst and have a strategy in place to deal with it. An 
example of a contingency strategy is the strategy for organizational financial 
problems. 

 



 Page 166 

 

  

 

 

 

 The strategies used in critical systems ensure reliability, security, and safety, where you 
must avoid, tolerate, or recover from failures. 

 

 It is best to use a strategy that avoids the risk. 

 If this is not possible, you should use a strategy that reduces the chances 
that the risk will have serious effects. 

 Finally, you should have strategies in place to cope with the risk if it arises. These 
should reduce the overall impact of a risk on the project or product. 

 
 

 
 

  Risk Monitoring 

 Risk monitoring is the process of checking that your assumptions about the 
product, process, and business risks have not changed. 

 You should regularly assess each of the identified risks to decide whether or 
not that risk is becoming more or less probable. 

 You should also think about whether or not the effects of the risk have 
changed. 

 

 



 Page 167 

 

  

 

 

 

 To do this, you have to look at other factors, such as the number of requirements 
change requests, which give you clues about the risk probability and its effects. 
These factors are dependent on the types of risk. 

 

 

 

 

 You should monitor risks regularly at all stages in a project. 

 At every management review, you should consider and discuss each of the key risks 
separately. 

 You should decide if the risk is more or less likely to arise and if the seriousness 
and consequences of the risk have changed. 

 

MANAGING PEOPLE 

 The people working in a software organization are its greatest assets. 

 It is expensive to recruit and retain good people. 

 Software managers have to ensure that the engineers working on a project are as 
productive as possible. 

 It is important that software project managers understand the technical issues that 
influence the work of software development. 

 Software engineers often have strong technical skills but may lack the softer skills that 
enable them to motivate and lead a project development team. 

 As a project manager, you should be aware of the potential problems of people 
management and should try to develop people management skills. 

 

 

 



 Page 168 

 

  

 

 

 
 4 critical factors that influence the relationship between a manager and the people 

that he or she manages: 

1. Consistency  

comparable way. No one expects all rewards to be identical, but people 

should not feel that their contribution to the organization is undervalued. 

2. Respect  Different people have different skills, and managers should 

respect these differences. 

3. Inclusion ey feel that others listen 

to them and take account of their proposals. It is important to develop a 

working environment where all views, even those of the least experienced 

staff, are considered. 

4. Honesty  As a manager, you should always be honest about what is 

going well and what is going badly in the team. You should also be 

honest about your level of technical knowledge and be willing to defer 

to staff with more knowledge when necessary. 

 

Motivating People: 

 As a project manager, you need to motivate the people who work with you so 
that they will contribute to the best of their abilities. 

 In practice, motivation means organizing work and its environment to encourage people 
to work as effectively as possible. 

 To provide this encouragement, you should understand a little about what motivates 
people. 

 People are motivated by satisfying their needs. These needs are arranged in 
a series of levels, as shown in Figure. 

 

 

  

 

 
 

 

 

 

 

 



 Page 169 

 

  

 

 

 

 

1.  To satisfy social needs, you need to give people time to meet their co- 

workers and provide places for them to meet. This is relatively easy when all of the 
members of a development team work in the same place. 

Social networking systems and teleconferencing can be used for remote communications. 

2. To satisfy esteem needs, you need to show people that they are valued by the 
organization. Public recognition of achievements is a simple and effective way 
of doing this. 

3. Finally, to satisfy self-realization needs, you need to give people 
responsibility for their work, assign them demanding (but not impossible) 
tasks, and provide opportunities for training and development where people 
can enhance their skills. Training is an important motivating influence as 
people like to gain new knowledge and learn new skills. 

 

The lower levels of this hierarchy represent fundamental needs for food, sleep, and so on, and the 

need to feel secure in an environment. 

 Social need is concerned with the need to feel part of a social grouping. 

 Esteem need represents the need to feel respected by others, and self- 

realization need is concerned with personal development. 

 People need to satisfy lower-level needs such as hunger before the more abstract, 
higher-level needs. 

 People working in software development organizations are not usually hungry, 
thirsty, or physically threatened by their environment. Therefore, making sure that 
peoples‘ social, esteem, and self-realization needs are satisfied is most important 
from a management point of view. 

 Maslow‘s model of motivation takes an exclusively personal viewpoint 

on motivation. 

 It does not take adequate account of the fact that people feel themselves to be part 
of an organization, a professional group, and one or more cultures. 

 Being a member of a cohesive group is highly motivating for most people. 

 Therefore, as a manager, you also have to think about how a group as a whole can be 
motivated. 



 

Department of Computer Science and Engineering,NCERC,Pampady Page 170 
 

 
 
 

 Psychological personality type also influences motivation. 

 Bass and Dunteman (Bass and Dunteman 1963) identified 3 classifications 
for professional workers: 

1. Task-oriented people  who are motivated by the work they do. In 

software engineering, these are people who are motivated by the 

intellectual challenge of software development. 

2. Self-oriented people  success 

and recognition. They are interested in software development as a means of 

achieving their own goals. They often have longer-term goals and they wish 

to be successful in their work to help realize these goals. 

3. Interaction-oriented people  who are motivated by the presence and 

actions of co-workers. 

 

Research has shown that interaction-oriented personalities usually like to work as part of a 

group, whereas task-oriented and self- oriented people usually prefer to act as 

individuals. 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,Pampady Page 171 
 

 

 

 

 

• People Capability Maturity Model (P-CMM)  

 assessing how well organizations manage the development of their 

staff. It highlights best practice in people management and provides a basis for 

organizations to improve their people management processes. It is best suited to large 

rather than small, informal companies. 

 

• Effective communication is achieved when communications are two-way and the people 

involved can discuss issues and information and establish a common understanding of 

proposals and problems. 

• All this can be done through meetings, although these meetings are often dominated 

by powerful personalities. 

• Informal discussions when a manager meets with the team for coffee are sometimes 

more effective. 

• Wikis and blogs allow project members and external stakeholders to exchange 

information, irrespective of their location. They help manage information and 

keep track of discussion threads, which often become confusing when 

conducted by email. 

• You can also use instant messaging and teleconferences, which can be easily arranged, to 

resolve issues that need discussion. 

 

TEAMWORK 

 As it is impossible for everyone in a large group to work together on a single problem, 

large teams are usually split into a number of smaller groups. 

 Each group is responsible for developing part of the overall system. 

 The best size for a software engineering group is 4 to 6 members, and they should never 

have more than 12 members. 

 When groups are small, communication problems are reduced. 



 

Department of Computer Science and Engineering,NCERC,Pampady Page 172 
 

 

 

 

 

 

 

 

 

 

 Putting together a group that has the right balance of technical skills, experience, and 
personalities is a critical management task. 

 A good group is cohesive and thinks of itself as a strong, single unit. 

 The people involved are motivated by the success of the group as well as by their own 
personal goals. 

 In a cohesive group, members think of the group as more important than the 
individuals who are group members. 

 They are loyal to the group. 

 They identify with group goals and other group members. 

 They attempt to protect the group, as an entity, from outside interference. This 
makes the group robust and able to cope with problems and unexpected 
situations. 

 
 An effective way of making people feel valued and part of a group is to make sure 

that they know what is going on. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 173 
 

  The benefits of creating a cohesive group are: 

1. The group can establish its own quality standards. 

2. Individuals learn from and support each other. 

3. Knowledge is shared. 

4. Refactoring and continual improvement is encouraged. 

  Good project managers should always try 
to encourage group cohesiveness. 

 They may try to establish a sense of group identity by naming the 
group and establishing a group identity and territory. 

 One of the most effective ways of promoting cohesion is to be 

inclusive i.e., you should treat group members as responsible and 
trustworthy, and make information freely available. 

 Given a stable organizational and project environment, the 3 factors 

that have the biggest effect on team working are: 

1. The people in the group (Selecting group members) 

2. The way the group is organized (Group organizations) 

3. Technical and managerial communications (Group communications) 

Selecting  Group Members: 

 A manager or team leader‘s job is to create a cohesive group and organize 

that group so that they work together effectively. 

 This task involves selecting a group with the right balance of technical 
skills and personalities. 

 Technical knowledge and ability should not be the only 
factor used to select group members. 

 People who are motivated by the work are likely to be 
the strongest technically. 

 People who are self-oriented will probably be best at pushing 
the work forward to finish the job. 

 People who are interaction-oriented help facilitate communications 
within the group. 

 The project manager has to control the group so that individual goals do not 
take precedence over organizational and group objectives. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 174 
 

 This control is easier to achieve if all group members participate in 
each stage of the project. 

 Individual initiative is most likely to develop when group members are given 
instructions without being aware of the part that their task plays in the overall 
project. 

 If all the members of the group are involved in the design from the start, 
they are more likely to understand why design decisions have been made. 
They may then identify with these decisions rather than oppose them 

 

 

Group Organization 

 The way a group is organized affects the group‘s decisions, the ways 
information is exchanged, and the interactions between the 
development group and external project stakeholders. 

 Project managers are often responsible for selecting the people in the 
organization who will join their software engineering team. 

 Getting the best possible people in this process is very important as 
poor selection decisions may be a serious risk to the project. 

 Key factors that should influence the selection of staff are education 
and training, application domain and technology experience, 
communication ability, adaptability, and problem solving ability. 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 175 
 

Important organizational questions for project 

managers  

 

include the following: 
1. Should the project manager be the technical leader of the group? 

2. Who will be involved in making critical technical decisions, 
and how will these decisions be made? Will decisions be 
made by the system architect or the project manager or by 
reaching consensus among a wider range of team members? 

3. How will interactions with external 
stakeholders and senior company management 
be handled? 

4. How can groups integrate people who are not co-located? 

5. How can knowledge be shared across the group? 

 

Informal Groups Hierarchical 

Groups 

1. Small programming groups are usually 

organized. 

2. Group leader   gets   involved   in   the   

software 

development with the other group members. 

3. The group as a whole discusses the work to 
be carried out, and tasks are allocated 
according to ability and experience. 

4. More senior group members may be 
responsible for the architectural design. 

5. Detailed design and implementation is the 
responsibility of the team member who is 
allocated to a particular task. 

6. Groups are very successful, particularly 
when most group members are experienced 
and competent. Such a group makes 
decisions which improves cohesiveness and 
performance. 

7.  With no experienced engineers to 
direct the work, the result can be a lack 
of coordination between group 
members and, possibly, eventual project 
failure. 

1. Group leader is at the top of the hierarchy. 

2. Group leader has more formal authority than 

the 

group members and so can direct their work. 

3. There is a clear organizational structure. 

4. Decisions are made toward the top of the 
hierarchy and implemented by people lower 
down. 

5. Communications are primarily instructions 
from senior staff; the people at lower levels of 
the hierarchy have relatively little 
communication with the managers at the upper 
levels. 

6. These groups can work well when a well- 
understood problem can be easily broken 
down into software components that can be 
developed in different parts of the hierarchy. 

7. This grouping allows for rapid decision making. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 176 
 

 In software development, effective team communications at all 

levels is essential: 

1. Changes to the software often require changes to several 

parts of the system, and this requires discussion and 

negotiation at all levels in the hierarchy. 

2. Software technologies change so fast that more junior staff 

may know more about new technologies than experienced 

staff. Top-down communications may mean that the project 

manager does not find out about the opportunities of using 

these new technologies. More junior staff may become 

frustrated because of what they see as old-fashioned 

technologies being used for development. 

 A major challenge facing project managers is the difference in 

technical ability between group members. 

 i.e., adopting a group model that is based on individual experts can 

pose significant risks. 

Group Communications: 

 It is absolutely essential that group members communicate effectively and 

efficiently with each other and with other project stakeholders. 

 Good communication also helps strengthen group cohesiveness. 

 Group members: 

1. Exchange information on the status of their work, the 

design decisions that have been made, and changes to 

previous design decisions. 

2. Resolve problems that arise with other 

stakeholders and inform these stakeholders of 

changes to the system, the group, and delivery 

plans. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 177 
 

3. Come to understand the motivations, strengths, and 

weaknesses of other people in the group. 

 The effectiveness and efficiency of communications are influenced by: 

1. Group size 

for members to communicate effectively. The number 

of one-way communication links is n * (n − 1), where n 

is the group size. 

2. Group structure 

communicate more effectively than people in groups with a 

formal, hierarchical structure. 

3. Group composition  People with the same personality 

may clash, and, as a result, communications can be 

inhibited. 

4. The physical work environment  The organization of 

the workplace is a major factor in facilitating or 

inhibiting communications. 

5. The available communication channels  There are 

many different forms of communication—face to face, 

email messages, formal documents, telephone, and 

technologies such as social networking and wikis. 

       Configuration management 

 Configuration management (CM) is concerned with the policies, processes, and tools 

for managing changing software systems. 

 You need to manage evolving systems because it is easy to lose track of 

what changes and component versions have been incorporated into each 

system version. 

  Versions implement proposals for change, corrections of faults, and adaptations 

for different hardware and operating systems. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 178 
 

 Several versions may be under development and in use at the same time. 

 If you don‘t have effective configuration management procedures in place, you may 

waste effort modifying the wrong version of a system, delivering the wrong version 

of a system to customers, or forgetting where the software source code for a 

particular version of the system or component is stored. 

 Configuration management is useful for individual projects as it is easy 

for one person to forget what changes have been made. 

 It is essential for team projects where several developers are working at the 

same time on a software system. 

 The configuration management system provides team members with access to the 

system being developed and manages the changes that they make to the code 

The configuration management of a software system product involves 

four closely related activities (Figure 1): 

1. Version control: This involves keeping track of the multiple versions of system 

components and ensuring that changes made to components by different 

developers do not interfere with each other. 

2. System building: This is the process of assembling program components, data, and 

libraries, then compiling and linking these to create an executable system. 

3. Change management: This involves keeping track of requests for changes to 

delivered software from customers and developers, working out the costs and 

impact of making these changes, and deciding if and when the changes should be 

implemented. 

4. Release management: This involves preparing software for external release and 

keeping track of the system versions that have been released for customer use. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 179 
 

 

Figure : Configuration management activities 

CONFIGURATION MANAGEMENT (SCM) 
 

 

 Change is inevitable when computer software is built and can lead to 

confusion when you and other members of a software team are working on a 

project. 

 Configuration management is the art of identifying,organizing, and 

controlling modifications to the software being built by a programmingteam. 

 The goal is to maximize productivity by minimizing mistakes. 

 SCM activities are developed to (1) identify change, (2) control change,(3) 

ensure that change is being properly implemented, and (4) report changes 

toothers who may have an interest. 

 There are four fundamental sources of change: 

(i) New business or market conditions dictate changes in product 

requirements or business rules. 

(ii) New stakeholder needs demand modification of data produced by 

informationsystems, functionality delivered by products, or services 

deliveredby a computer-based system. 

(iii) Reorganization or business growth/downsizing causes changes in 

projectpriorities or software engineering team structure. 

(iv) Budgetary or scheduling constraints cause a redefinition of the system 

orproduct. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 180 
 

Elements of SCM 

Four important elements that should exist when a configuration management 

system is developed: 

(a) Component elements —A set of tools coupled within a file management 

system (e.g., a database) that enables access to and management of each 

software configuration item. 

(b) Process elements —A collection of procedures and tasks that define an 

effective approach to change management (and related activities) for all 

constituencies involved in the management, engineering, and use of computer 

software. 

(c) Construction elements —A set of tools that automate the construction 

ofsoftware by ensuring that the proper set of validated components (i.e., 

thecorrect version) have been assembled. 

(d) Human elements —A set of tools and process features (encompassing 

otherCM elements) used by the software team to implement effective SCM. 

 

Baseline 

 A baseline is a software configuration management concept that helps you to 

control change without seriously impeding justifiable change. 

 A specification or product that has been formally reviewed and agreed upon, 

thatthereafter serves as the basis for further development, and that can be 

changed onlythrough formal change control procedures. 

 Before a software configuration item becomes a baseline, change may be 

madequickly and informally. 

However, once a baseline is established, changes can be made, but a specific, 

formal procedure must be applied to evaluate and verify each change. 

Version and release management 

 Invent identification scheme for system versions 

 Plan when new system version is to be produced 

 Ensure that version management procedures and tools are properly applied 

 Plan and distribute  new system releases 



 

Department of Computer Science and Engineering,NCERC,pampady Page 181 
 

Versions/variants/releases 

 Version  An instance of a system which is functionally distinct in some way from other  

system instances 

 Variant  An instance of a system which is not functionally identical but non-functionally  

distinct from other instances of a system 

 Release  An instance of a system which is distributed to users outside of the development  

team 

 

Version identification 

 Procedures for version identification should define an unambiguous way of identifying 

component versions 

 Three basic techniques for component identification 

• Version numbering 

• Attribute-based identification 

• Change-oriented identification 

 

 

Version numbering 

 Simple naming scheme uses a linear derivation  

e.g. V1, V1.1, V1.2, V2.1, V2.2 etc. 

 However, actual derivation structure may be a tree or a network rather than a 

sequence 

 Names are not meaningful.  

 Hierarchical naming scheme may be better 

Version derivation structure 

Attribute-based identification 

 Attributes can be associated with a version with the combination of attributes 

identifying that  

version 

 Examples of attributes are Date, Creator, Programming Language, Customer, Status 

etc. 

 More flexible than an explicit naming scheme for version retrieval;  

 Supports queries when looking for versions 

 Can cause problems with uniqueness 



 

Department of Computer Science and Engineering,NCERC,pampady Page 182 
 

 Awkward - needs an associated name for easy reference 

 Examples of attributes are 

1. Customer 

2. Development language 

3. Development status 

4. Hardware platform 

5. Creation date 

 

Change-oriented identification 

 Integrates versions and the changes made to create these versions 

 Used for systems rather than components 

 Each proposed change has a change set that describes changes made to implement 

that change 

 Change sets are applied in sequence so that, in principle, a version of the system that 

incorporates an arbitrary set of changes may be created 

 

Release management 

 Releases must incorporate changes forced on the system by errors discovered by 

users and  

by hardware changes 

 They must also incorporate new system functionality 

 Release planning is concerned with when to issue a system version as a release 

 

System releases 

 Not just a set of executable programs 

 May also include 

• Configuration files defining how the release is configured for a particular 

installation 

• Data files needed for system operation 

• An installation program or shell script to install the system on target 

hardware 

• Electronic and paper documentation 

• Packaging and associated publicity 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 183 
 

Release decision making 

 Must plan when to distribute a system release 

 Preparing and distributing a release is expensive  

 Factors:  

•  technical quality  

• competition, marketing requirements  

• customer change requests 

 

Release creation 

 Collect all files and documentation   

 Configuration descriptions / instructions/ scripts   

 Documented to allow re-creation   

Release Documentation 

o Whenever a system release is actually produces , it must be documented to 

ensure that it can be re created exactly in future 

o This is mainly used in customized long term embedded systems 

o To document a release we have to record the specific versions of source code 

components which were used to create executable code 

o There need to record versions of OS, libraries, compilers and other tools used 

to build software 



 

Department of Computer Science and Engineering,NCERC,pampady Page 184 
 

Empirical Cost Estimation Model: COCOMO Model 
 

 The Constructive Cost Model (COCOMO) is a procedural software 

costestimation model developed by Barry W Boehm. 

 COCOMO is used to estimate size, effort and duration based on the cost of the 

software 

 COCOMO consists of a hierarchy of three increasingly detailed and accurate 

forms 

 The first level, Basic COCOMO is good for quick, early, rough order of 

magnitude estimates of software costs. 

 But its accuracy is limited due to its lack of factors to account for difference in 

project attributes (Cost Drivers). 

 Intermediate COCOMO takes these Cost Drivers into account. 

 Detailed COCOMO additionally accounts for the influence of individual project 

phases. 

Basic COCOMO 

 Basic COCOMO computes software development effort (and cost) as a function 

of program size. 

 Program size is expressed in estimated thousands of source lines of code (SLOC, 

KLOC). 

 COCOMO applies to three classes of software projects: 

 Organic projects - "small" teams with "good" experience working with "less than 

rigid" requirements 

  Semi-detached projects - "medium" teams with mixed experience working with a 

mix of rigid and less than rigid requirements 

 Embedded projects - developed within a set of "tight" constraints. It is also 

combination of organic and semi-detached projects.(hardware, software, 

operational, ...) 



 

Department of Computer Science and Engineering,NCERC,pampady Page 185 
 

 The basic COCOMO equations take the form 

 

 Basic COCOMO is good for quick estimate of software costs 

 However it does not account for differences in hardware constraints, personnel 

quality and experience, use of modern tools and techniques, etc 

 

Intermediate COCOMO 

 Intermediate COCOMO computes software development effort as function of 

 program size and a set of "cost drivers" that include subjective assessment of 

product, hardware, personnel and project attributes 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 186 
 

 

This extension considers a set of four "cost drivers", each with a number of 

subsidiary attributes:-  

(a) Product attributes 

Required software reliability extent 

Size of application database 

Complexity of the product 

(b) Hardware attributes 

Run-time performance constraints 

Memory constraints 

Volatility of the virtual machine environment Required turnabout time 

(c) Personnel attributes 

Analyst capability 

Software engineering capability Applications experience 

Virtual machine experience Programming language experience 

(d) Project attributes 

Use of software tools 

Application of software engineering methods  

Required development schedule 

Each of the 15 attributes receives a rating on a six-point scale that ranges from 

"very low" to "extra high" (in importance or value). 

 The product of all effort multipliers results is an effort adjustment factor (EAF). 

 Typical values for EAF range from 0.9 to 1.4 



 

Department of Computer Science and Engineering,NCERC,pampady Page 187 
 

 

 

 

The detailed model uses different effort multipliers for each cost driver 

attribute. 

 These Phase Sensitive effort multipliers are each to determine the amount of effort 

required to complete each phase. 

 In detailed COCOMO, the whole software is divided into different modules and then 

we apply COCOMO in different modules to estimate effort and then 

 sum the effort. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 188 
 

 The effort is calculated as a function of program size and a set of cost drivers are 

given according to each phase of the software life cycle. 

 

The Six phases of detailed COCOMO are:- 

 

A )planning and requirements 

B )system design 

C )detailed design 

D )module code and test 

E )integration and test 

F) Cost Constructive model 

 

Version Management 

• Version management is the process of keeping track of different versions 
of software components and the systems in which these components are 
used. 

• It also involves ensuring that changes made by different developers to these versions do 
not interfere with each other. 

• In other words, version management is the process of managing codelines and 
baselines.  

• A codeline is a sequence of versions of source code, with later 
versions in the sequence derived from earlier versions. 

•  Codelines normally apply to components of systems so that there are different versions 
of each component. 

• A baseline is a definition of a specific system. 

• The baseline specifies the component versions that are included in the system 
and identifies the libraries used, configuration files, and other system 
information. 

• In the figure different baselines use different versions of the 
components from each codeline. 

• In the diagram, boxes representing components are shaded in the baseline definition to 
indicate that these are actually references to components in a codeline. The mainline is 
a sequence of system versions developed from an original baseline 
 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 189 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

• Baselines may be specified using a configuration language in which you define 
what components should be included in a specific version of a system. 

• It is possible to explicitly specify an individual component version (X.1.2, 
say) or simply to specify the component identifier (X). 

• If you simply include the component identifier in the configuration description, 
the most recent version of the component should be used. 

• Baselines are important because you often have to re-create an individual 
version of a system 

• Version control (VC) systems identify, store, and control access to the different 
versions of components. 

• There are two types of modern version control system: 

1. Centralized systems, where a single master repository maintains all versions 
of the software components that are being developed. Subversion is a widely 
used example of a centralized VC system. 

2. Distributed systems, where multiple versions of the component repository exist 
at the same time. Git, is a widely used example of a distributed VC system. 

 
Centralized and distributed VC systems provide comparable functionality but 
implement this functionality in different ways. Key features of these systems 
include: 

1. Version and release identification: Managed versions of a component are assigned 
unique identifiers when they are submitted to the system. These identifiers allow 
different versions of the same component to be managed, without changing the 
component name. Versions may also be assigned attributes, with the set of 
attributes used to uniquely identify each version. 

2. Change history recording: The VC system keeps records of the changes that 
have been made to create a new version of a component from an earlier 
version. 

3. Independent development: Different developers may be working on the same 
component at the same time. The version control system keeps track of 
components that have been checked out for editing and ensures that 
changes made to a component by different developers do not interfere. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 190 
 

4. Project support: A version control system may support the development of several 
projects, which share components. It is usually possible to check in and check 
out all of the files associated with a project rather than having to work with one 
file or directory at a time. 

5. Storage management: Rather than maintain separate copies of all versions of a 
component, the version control system may use efficient mechanisms to ensure that 
duplicate copies of identical files are not maintained. Where there are only small 
differences between files, the VC system may store these differences rather than 
maintain multiple copies of files. A specific version may be automatically re-
created by applying the differences to a master version 
 
Most software development is a team activity, so several team members often work 
on the same component at the same time. 

• It‘s important to avoid situations where changes interfere with each other. 

•  The project repository maintains the ―master‖ version of all components, 
which is used to create baselines for system building. When modifying 
components, developers copy (check-out) these from the repository into their 
workspace and work on these copies. 

• When they have completed their changes, the changed components 
are returned (checked-in) to the repository. 

• However, centralized and distributed VC systems support independent 

development of shared 

components in different ways. 

• In centralized systems (FIGURE 3), developers check out components or 
directories of components from the project repository into their private 
workspace and work on these copies in their private workspace. 

• When their changes are complete, they check-in the components back to 
the repository. This creates a new component version that may then be 
shared. 

• If two or more people are working on a component at the same time, each must 

check out the component from the repository. 

•  If a component has been checked out, the version control system warns 
other users wanting to check out that component that it has been checked out 
by someone else. 

• The system will also ensure that when the modified components are checked 
in, the different versions are assigned different version identifiers and are 
stored separately. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 191 
 

 

 

 

Figure: Check in and Check out from a centralized version repository. 

 

• In a distributed VC system, such as Git, a different approach is used. 

• A ―master‖ repository is created on a server that maintains the code produced by the 

development team. 

• Instead of simply checking out the files that they need, a developer creates a clone of the 
project repository that is downloaded and installed on his or her computer. 

•  Developers work on the files required and maintain the new versions on their 
private repository on their own computer. 

• When they have finished making changes, they ―commit‖ these changes and 
update their private server repository. 

• They may then ―push‖ these changes to the project repository or tell the 
integration manager that changed versions are available. 

• He or she may then ―pull‖ these files to the project repository (see Figure 4). In this 
example, both Bob and Alice have cloned the project repository and have updated 
files. 

• They have not yet pushed these back to the project repository. 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 192 
 

This model of development has a number of advantages: 

1. It provides a backup mechanism for the repository. If the repository is corrupted, 
work can continue and the project repository can be restored from local copies. 

2. It allows for offline working so that developers can commit changes if they do not have 
a network connection. 

3. Project support is the default way of working. Developers can compile and test the 
entire system on their local machines and test the changes they have made. 

Distributed version control is essential for open- source development where several 
people may be working simultaneously on the same system without any central 
coordination. 

There is no way for the open-source system ―manager‖ to know when changes will be made. 

• In this case, as well as a private repository on their own computer, developers also 
maintain a public server repository to which they push new versions of components that 
they have changed. 

• It is then up to the open-source system ―manager‖ to decide when to pull these changes into 



 

Department of Computer Science and Engineering,NCERC,pampady Page 193 
 

the definitive system. 

• This organization is shown in figure 5. 

 

 

 

 

 

• A consequence of the independent development of the same component is that codelines 

may branch. 

• Rather than a linear sequence of versions that reflect changes to the component over time, 

there may be 

several independent sequences, as shown in Figure 6. 

• This is normal in system development, where different developers work independently on 

different versions 

of the source code and change it in different ways. 

• It is generally recommended when working on a system that a new branch 
should be created so that changes do not accidentally break a working 
system. 

• At some stage, it may be necessary to merge codeline branches to create a new version of 
a component that includes all changes that have been made. 

• This is also shown in Figure 6, where component versions 2.1.2 and 2.3 are merged to 

create version 2.4. 

• If the changes made involve completely different parts of the code, the component 
versions may be merged automatically by the version control system by combining the 
code changes. 

• This is the normal mode of operation when new features have been added. 

• These code changes are merged into the master copy of the system. 
However, the changes made by different developers sometimes overlap. 

 

 

 

• The changes may be incompatible and interfere with each other. In this case, a 



 

Department of Computer Science and Engineering,NCERC,pampady Page 194 
 

developer has to check for clashes and make changes to the components to resolve 
the incompatibilities between the different versions. 

 

Figure 6: Branching and Merging 

 

 

 

 

• When version control systems were first developed, storage management was one of 
their most important functions. Disk space was expensive, and it was important to 
minimize the disk space used by the different copies of components. 

• Instead of keeping a complete copy of each version, the system stores a list of 
differences (deltas) between one version and another. 

• By applying these to a master version (usually the most recent version), a target version can 

be re-created. This is illustrated in 

Figure 7. 

• When a new version is created, the system simply stores a delta, a list of 
differences, between the new version and the older version used to create that 
new version. 

•  In Figure 7, the shaded boxes represent earlier versions of a component that are 
automatically re-created from the most recent component version. 

• Deltas are usually stored as lists of changed lines, and, by applying these automatically, one 

version of a component can be created 

from another. 

•  As the most recent version of a component will most likely be the one used, most 
systems store that version in full. The deltas then define how to re-create earlier 
system versions. 

• One of the problems with a delta-based approach to storage management is that it can take 

a long time to apply all of the deltas. 

• As disk storage is now relatively cheap, Git uses an alternative, faster approach. Git does 

not use deltas but applies a standard 

compression algorithm to stored files and their associated meta-information. It does not 

store duplicate copies of files. 

 

• Retrieving a file simply involves decompressing it, with no need to apply a chain of 



 

Department of Computer Science and Engineering,NCERC,pampady Page 195 
 

operations. 

• Git also uses the notion of packfiles where several smaller files are combined into an 
indexed single file. This reduces the overhead associated with lots of small files. Deltas 
are used within packfiles to further reduce their size 

 
Figure: Storage management using deltas 

 

System building 

• System building is the process of creating a complete, executable system by compiling and 
linking the system components, external libraries, configuration files, and other 
information. 

• System-building tools and version control tools must be integrated as the build process 
takes component versions from the repository managed by the version control system. 

• System building involves assembling a large amount of information about the software 
and its operating environment. 

• Therefore, it always makes sense to use an automated build tool to create a system build 
(Figure 8). 

• source code files that are involved in the build are not enough. You may have to link these 
with externally provided libraries, data files (such as a file of error messages), and 
configuration files that define the target installation. 

• You may have to specify the versions of the compiler and other software tools that are to 
be used in the build. Ideally, you should be able to build a complete system with 

 

 

• Figure 8: System building 

 

Tools for system integration and building include some or all of the following features: 



 

Department of Computer Science and Engineering,NCERC,pampady Page 196 
 

1. Build script generation: The build system should analyze the program that is being 
built, identify dependent components, and automatically generate a build script 
(configuration file). The system should also support the manual creation and editing 
of build scripts. 

2.  Version control system integration: The build system should check 
out the required versions of components from the version control 
system. 

3. Minimal recompilation: The build system should work out what source code needs 
to be recompiled and set up compilations if required. 

4. Executable system creation: The build system should link the compiled object 
code files with each other and with other required files, such as libraries and 
configuration files, to create an executable system. 

5. Test automation: Some build systems can automatically run automated tests using 
test automation tools such as JUnit. These check that the build has not been 
―broken‖ by changes. 

6.  Reporting: The build system should provide reports about the success or failure of 
the build and the tests that have been run. 

7. Documentation generation: The build system may be able to generate release notes 
about the build and system help pages. 

• The build script is a definition of the system to be built. 

• It includes information about components and their 
dependencies, and the versions of tools used to compile and 
link the system. 

• The configuration language used to define the build script 
includes constructs to describe the system components to be 
included in the build and their dependencies. 

• Building is a complex process, which is potentially error-prone, as three 
different system platforms may be involved (Figure 9): 

1. The development system, which includes development tools such as compilers and 
source code editors. Developers check out code from the version control system 
into a private workspace before making changes to the system. They may wish to 
build a version of a system for testing in their development environment before 
committing changes that they have made to the version control system. 

2. The build server, which is used to build definitive, executable versions of the 
system. This server maintains the definitive versions of a system. All of the system 
developers check in code to the version control system on the build server for system 
building. 

3. The target environment, which is the platform on which the system executes. This 
may be the same type of computer that is used for the development and build 
systems. However, for real- time and embedded systems, the target environment is 
often smaller and simpler than the development environment (e.g., a cell phone). 
For large systems, the target environment may include databases and other 
application systems that cannot be installed on development machines. In these 
situations, it is not possible to build and test the system on the development 
computer or on the build server 



 

Department of Computer Science and Engineering,NCERC,pampady Page 197 
 

 
Figure: Development, build and target platforms 

 

• Agile methods recommend that very frequent system builds should be carried 
out, with automated testing used to discover software problems. Frequent 
builds are part of a process of continuous integration as shown in Figure 10. 

• In keeping with the agile methods notion of making many small changes, continuous 
integration involves rebuilding the mainline frequently, after small source code 
changes have been made. 

• The steps in continuous integration are: 

1. Extract the mainline system from the VC system into the developer‘s private 

workspace. 

2. Build the system and run automated tests to ensure that the built system passes all 
tests. If not, the build is broken, and you should inform whoever checked in the 
last baseline system. He or she is responsible for repairing the problem. 

3. Make the changes to the system components. 

4. Build the system in a private workspace and rerun system tests. If the tests fail, 

continue editing. 

5. Once the system has passed its tests, check it into the build system server but do not 

commit it as a new system baseline in the 

VC system. 

6. Build the system on the build server and run the tests. Alternatively, if you are using 
Git, you can pull recent changes from the server to your private workspace. You 
need to do this in case others have modified components since you checked out the 
system. If this is the case, check out the components that have failed and edit these 
so that tests pass on your private workspace. 

7. If the system passes its tests on the build system, then commit the changes you have 

made as a new baseline in the system 

mainline. 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 198 
 

• Tools such as Jenkins are used to support continuous integration. 

• These tools can be set up to build a system as soon as a developer has completed a 

repository update. 

• The advantage of continuous integration is that it allows problems caused by 
the interactions between different developers to be discovered and repaired as 
soon as possible. 

• The most recent system in the mainline is the definitive working system. 

•  However, although continuous integration is a good idea, it is not always 
possible to implement this approach to system building: 

1. If the system is very large, it may take a long time to build and test, especially 
if integration with other application systems is involved. It may be impractical 
to build the system being developed several times per day. 

If the development platform is different from the target platform, it may not be 

possible to run system tests in the developer‘s private workspace. There may be 

differences in hardware, operating system, or installed software. Therefore, more time 

is required for testing the system 

 
• For large systems or for systems where the execution platform is not the same as the 

development platform, continuous integration is usually impossible. In those 
circumstances, frequent system building is supported using a daily build system: 

1. The development organization sets a delivery time (say 2 p.m.) for system 
components. If developers have new versions of the components that they are 
writing, they must deliver them by that time. Components may be incomplete 
but should provide some basic functionality that can be tested. 

2. A new version of the system is built from these components by compiling 
and linking them to form a complete system. 

3. This system is then delivered to the testing team, which carries out a set of predefined 

system tests. 

4. Faults that are discovered during system testing are documented and returned to the 
system developers. They repair these faults in a subsequent version of the 
component. 

The advantages of using frequent builds of software are that the chances of finding problems 
stemming from component interactions early in the process are increased. Frequent building 
encourages thorough unit testing of components. 

Frequent building encourages thorough unit testing of components. 

• As compilation is a computationally intensive process, tools to support system building 
may be designed to minimize the amount of compilation that is required. They do this 
by checking if a compiled version of a component is available. If so, there is no need to 
recompile that component. 

• Therefore, there has to be a way of unambiguously linking the source 
code of a component with its equivalent object code. 

• This linking is accomplished by associating a unique signature with each file where a 

source code component is stored. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 199 
 

• The corresponding object code, which has been compiled from the source code, has 
a related signature. 

• The signature identifies each source code version and is changed when the source code 
is edited. By comparing the signatures on the source and object code files, it is 
possible to decide if the source code component was used to generate the object 
code component 

• Two types of signature may be used.(figure 10) 

1. Modification timestamps: 

• The signature on the source code file is the time and date when that file was modified. 

• If the source code file of a component has been modified after the related object code 
file, then the system assumes that recompilation to create a new object code file is 
necessary. 

• [For example, say components Comp.java and Comp.class have modification 
signatures of 17:03:05:02:14:2014 and 16:58:43:02:14:2014, respectively. This 
means that the Java code was modified at 3 minutes and 5 seconds past 5 on the 
14th of February 2014 and the compiled version was modified at 58 minutes and 43 
seconds past 4 on the 14th of February 2014. In this case, the system would 
automatically recompile Comp.java because the compiled version has an earlier 
modification date than the most recent version of the component. ] 

2. Source code checksums 

• The signature on the source code file is a checksum calculated from data in the file. 

• A checksum function calculates a unique number using the source text as input. 

• If you change the source code (even by one character), this will generate a different 
checksum. You can therefore be confident that source code files with different 
checksums are actually different. 

• The checksum is assigned to the source code just before compilation and uniquely 

identifies the source file. 

• The build system then tags the generated object code file with the checksum signature. 

• If there is no object code file with the same signature as the source code file to be 
included in a system, then recompilation of the source code is necessary 

 

 

 

 
 

Figure 10: Linking source and object code 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 200 
 

 
• As object code files are not normally versioned, the first approach(modification 

timestamps) means that only the most recently compiled object code file is 
maintained in the system. 

• This is normally related to the source code file by name; that is, it has the same name as 
the source code file but with a different suffix. Therefore, the source file Comp.Java 
may generate the object file Comp.class. 

• Because source and object files are linked by name, it is not usually possible to build 
different versions of a source code component into the same directory at the same 
time. 

• The compiler would generate object files with the same name, so only the most 
recently compiled version would be available. 

• The checksum approach has the advantage of allowing many different versions 
of the object code of a component to be maintained at the same time. 

• The signature rather than the filename is the link between source and object code. 
The source code and object code files have the same signature. Therefore, when 
you recompile a component, it does not overwrite the object code, as would 
normally be the case when the timestamp is used. 

• Rather, it generates a new object code file and tags it with the source code signature. 
Parallel compilation is possible, and different versions of a component may be 
compiled at the same time. 

• Change management 
Change is a fact of life for large software systems. Organizational needs and 
requirements change during the lifetime of a system, bugs have to be repaired, and 
systems have to adapt to changes in their environment. 

• To ensure that the changes are applied to the system in a controlled way, you need 
a set of tool-supported, change management processes. 

• Change management is intended to ensure that the evolution of the system is 
controlled and that the most urgent and cost-effective changes are prioritized. 

•  Change management is the process of analyzing the costs and benefits 
of proposed changes, approving those changes that are cost-effective, 
and tracking which components in the system have been changed. 

• Figure 11 is a model of a change management process that shows the main change 
management activities. This process should come into effect when the software is 
handed over for release to customers or for deployment within an organization 

 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 201 
 

 
 

• Many variants of this process are in use depending on whether the software is a custom 
system, a product line, or an off-the-shelf product. The size of the company also makes 
a difference—small companies use a less formal process than large companies that are 
working with corporate or government customers. ] 

• All change management processes should include some way of checking, costing, 
and approving changes. 

• Tools to support change management may be relatively simple issue or bug 
tracking systems or software that is integrated with a configuration management 
package for large-scale systems, such as Rational Clearcase. 

•  Issue tracking systems allow anyone to report a bug or make a suggestion for a system 
change, and they keep track of how the development team has responded to the issues. 

•  More complex systems are built around a process model of the change management 
process. They automate the entire process of handling change requests from the 
initial customer proposal to final change approval and change submission to the 
development team. 

• The change management process is initiated when a system stakeholder 

completes and submits a change request describing the change required to the 

system. member of the development team. The change request may be rejected at 

this stage. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 202 
 

• If the change request is a bug report, the bug may have already been reported and repaired. 

• Sometimes, what people believe to be problems are actually misunderstandings of what the 

system is expected to do. 

• On occasions, people request features that have already been implemented but that they 

don‘t know about. 

• If any of these features are true(ie. the change is not valid), the issue is closed 
and the form is updated with the reason for closure. 

• If it is a valid change request, it is then logged as an outstanding request for 

subsequent analysis. 

• For valid change requests, the next stage of the process is change assessment and 

costing. 

• This function is usually the responsibility of the development or maintenance team as they can 

work out what is involved in implementing the change 

• The impact of the change on the rest of the system must be checked. To do this, 
you have to identify all of the components affected by the change. 

•  If making the change means that further changes elsewhere in the system are 
needed, this will obviously increase the cost of change implementation. 

• Next, the required changes to the system modules are assessed. 

• Finally, the cost of making the change is estimated, taking into account the costs of 

changing related components 

• Following this analysis, a separate group decides if it is cost-effective for the business to 

make the change to the software. 

• For military and government systems, this group is often called the change control board 

(CCB). 

• In industry, it may be called something like a ―product development group‖ 
responsible for making decisions about how a software system should 
evolve. 

• This group should review and approve all change requests, unless the changes 
simply involve correcting minor errors on screen displays, web pages, or 
documents. 

• These small requests should be passed to the development team for immediate 
implementation. The CCB or product development group considers the impact of the 
change from a strategic and organizational rather than a technical point of view. 

• It decides whether the change in question is economically justified, and it prioritizes 
accepted changes for implementation. 

• Accepted changes are passed back to the development group; rejected change 
requests are closed and no further action is taken. 

• The consequences of not making the change: When assessing a change request, you have 
to consider what will happen if the change is not implemented.[ If the change is associated 
with a reported system failure, the seriousness of that failure has to be taken into account. If 
the system failure causes the system to crash, this is very serious, and failure to make the 
change may disrupt the operational use of the system. On the other hand, if the failure has 
a minor effect, such as incorrect colors on a display, then it is not important to fix the 
problem quickly. The change should therefore have a low priority. ] 



 

Department of Computer Science and Engineering,NCERC,pampady Page 203 
 

• The benefits of the change: Will the change benefit many users of the system, or will it 
only benefit the change proposer? 

• The number of users affected by the change: If only a few users are affected, then 
the change may be assigned a low priority. In fact, making the change may be 
inadvisable if it means that the majority of system users have to adapt to it. 

• The costs of making the change If making the change affects many system components 
(hence increasing the chances of introducing new bugs) and/or takes a lot of time to 
implement, then the change may be rejected. 

• The product release cycle If a new version of the software has just been released to 
customers, it may make sense to delay implementation of the change until the next 
planned release 
 
• Change management for software products (e.g., a CAD system product), 

rather than custom systems specifically developed for a certain customer, 
are handled in a different way. 

• In software products, the customer is not directly involved in decisions about 
system evolution, so the relevance of the change to the customer‘s business is 
not an issue. 

•  Change requests for these products come from the customer support team, the 
company marketing team, and the developers themselves. These requests may reflect 
suggestions and feedback from customers or analyses of what is offered by 
competing products. 

• The customer support team may submit change requests associated with bugs that 
have been discovered and reported by customers after the software has been 
released. 

• Customers may use a web page or email to report bugs. A bug management team then 

checks that the bug 

reports are valid and translates them into formal system change requests. 

• Marketing staff may meet with customers and investigate competitive products. 

• They may suggest changes that should be included to make it easier to sell a new version 
of a system to new and existing customers. 

• The system developers themselves may have some good ideas about new features that 
can be added to the system. 

• During development, when new versions of the system are created through daily 
(or more frequent) system builds, there is no need for a formal change 
management process. 

• Problems and requested changes are recorded in an issue tracking system and discussed in 

daily meetings. 

• Changes that only affect individual components are passed directly to the system 
developer, who either accepts them or makes a case for why they 
are not required. 

• However, an independent authority, such as the system architect, should assess and 
prioritize changes that cut across system modules that have been produced by different 
development teams. 

• In some agile methods, customers are directly involved in deciding whether a change 
should be implemented. When they propose a change to the system requirements, they 
work with the team to assess the impact of that change and then decide whether the 



 

Department of Computer Science and Engineering,NCERC,pampady Page 204 
 

change should take priority over the features planned for the next increment of the 
system. 

• However, changes that involve software improvement are left to the discretion of the 

programmers working on the system. 

• Refactoring, where the software is continually improved, is not seen as an overhead but as 

a necessary part of the development process. 

•  As the development team changes software components, they should 
maintain a record of the changes made to each component. This is 
sometimes called the derivation history of a component. 

• A good way to keep the derivation history is in a standardized comment at the 
beginning of the component source code (Figure 12). This comment should 
reference the change request that triggered the software change. These comments 
can be processed by scripts that scan all components for the derivation histories and 
then generate component change reports. 

• For documents, records of changes incorporated in each version are usually maintained in 

a separate page at the front of the document. 

 
12: Derivation History 

Release management 

 A system release is a version of a software system that is distributed to customers. 

 For mass-market software, it is usually possible to identify two types of release: 
major releases, which deliver significant new functionality, and minor releases, which 
repair bugs and fix customer problems that have been reported. 

 A software product release is not just the executable code of the system. 

 The release may also include: configuration files defining how the release 
should be configured for particular installations; data files, such as files of 
error messages in different languages, that are needed for successful system 
operation; 

 an installation program that is used to help install the system on target hardware; 

 electronic and paper documentation describing the system;packaging and associated 

publicity that have been designed for that release 



 

Department of Computer Science and Engineering,NCERC,pampady Page 205 
 

 Preparing and distributing a system release for mass-market products is an 
expensive process. 

 In addition to the technical work involved in creating a release distribution, advertising 
and publicity material have to be prepared. 

 Marketing strategies may have to be designed to convince customers to buy the 
new release of the system. 

 Careful thought must be given to release timing. 

 If releases are too frequent or require hardware upgrades, customers may not move to the 
new release, especially if they have to pay for it. 

 If system releases are infrequent, market share may be lost as customers move to 
alternative systems. 

 The various technical and organizational  factors that you should take into account when 
deciding on when to release a new version of a software product are shown in  
Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Factors influencing system release    planning 

 

 Release creation is the process of creating the collection of files and 
documentation that include all components of the system release. 
 

This process involves several steps: 

 The executable code of the programs and all associated data files must be identified in 
the version control system and tagged with the release identifier. 

 Configuration descriptions may have to be written for different 
hardware and operating systems. 

 Updated instructions may have to be written for customers who need to configure 
their own systems. 

 Scripts for the installation program may have to be written. 

 Web pages have to be created describing the release, with links 
to system documentation. 

 Finally, when all information is available, an executable master image of the software 
must be prepared and handed over for distribution to customers or sales outlets. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 206 
 

 For custom software or software product lines, the complexity of the system 
release management process depends on the number of system customers. 

 Special releases of the system may have to be produced for each customer. 

 Individual customers may be running several different releases of the system at the same 
time on different hardware. 

  Where the software is part of a complex system of systems, different variants of 
the individual systems may have to be created. 

  A software company may have to manage tens or even hundreds of different releases of 
their software. 

 Their configuration management systems and processes have to be designed to provide 
information about which customers have which releases of the system and the 
relationship between releases and system versions. 

 In the event of a problem with a delivered system, you have to be able to recover all of the 

component versions used in that specific system 

 When a system release is produced, it must be documented to ensure that it can be re-
created exactly in the future. 

 This is particularly important for customized, long-lifetime embedded systems, such as 
military systems and those that control complex machines. These systems may have a 
long lifetime—30 years in some cases. 

 Customers may use a single release of these systems for many years and may 
require specific changes to that release long after it has been superseded. 

 To document a release, you have to record the specific versions of the source code 

components that were used to create the executable code. 

  You must keep copies of the source code files, corresponding executables, and all data 
and configuration files. 

 It may be necessary to keep copies of older operating systems and other support software 
because they may still be in operational use. 

 You should also record the versions of the operating system, libraries, compilers, and 
other tools used to build the software. 

 These tools may be required in order to build exactly the same system at some later date. 

 Accordingly, you may have to store copies of the platform software and the tools used to 
create the system in the version control system, along with the source code of the target 
system. 

 When planning the installation of new system releases, you cannot assume that 
customers will always install new system releases. Some system users may be happy 
an existing system and may not consider it worthwhile to absorb the cost of changing 
to a new release. 

 New releases of the system cannot, therefore, rely on the installation of 
previous releases. 

 One benefit of delivering software as a service (SaaS) is that it avoids all 
of these problems. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 207 
 

 It simplifies both release management and system installation for customers. 

 The software developer is responsible for replacing the existing release of a system with 
a new release, which is made available to all customers at the same time. 

  However, this approach requires that all servers running the services be updated at the 
same time. To support server updates, specialized distribution management tools such as 
Puppet have been developed for ―pushing‖ new software to servers. 

 

 

 

  



 

Department of Computer Science and Engineering,NCERC,pampady Page 208 
 

 

 

MODULE 5 

NOTES 

 
  



 

Department of Computer Science and Engineering,NCERC,pampady Page 209 
 

 

 SOFTWARE QUALITY, PROCESS IMPROVEMENT AND TECHNOLOGY TRENDS  

 

Today, software quality remains an issue, but who is to blame? Customers blame developers, 

arguing that sloppy practices lead to low-quality software. Developers blame customers (and 

other stakeholders), arguing that irrational delivery dates and a continuing stream of changes 

force them to deliver software before it has been fully validated. Who‗s right? Both —and that‗s 

the problem.  

 

What is Quality?  

Quality can be described from five different points of view.  

(1) The transcendental view argues that quality is something you immediately recognize, but 

cannot explicitly define.  

(2) The user view sees quality in terms of an end user‗s specific goals. If a product meets those 

goals, it exhibits quality.  

(3) The manufacturer’s view defines quality in terms of the original specification of the product. 

If the product conforms to the spec, it exhibits quality.  

(4) The product view suggests that quality can be tied to inherent characteristics (e.g., functions 

and features) of a product.  

(5) The value-based view measures quality based on how much a customer is willing to pay for a 

product.  

 

In reality, quality encompasses all of these views and more.  

Quality of design refers to the characteristics that designers specify for a product. The grade of 

materials, tolerances, and performance specifications all contribute to the quality of design. As 

higher-grade materials are used, tighter tolerances and greater levels of performance are 

specified, the design quality of a product increases if the product is manufactured according to 

specifications. In software development, quality of design encompasses the degree to which the 

design meets the functions and features specified in the requirements model. Quality of 

conformance focuses on the degree to which the implementation follows the design and the 

resulting system meets its requirements and performance goals.  

User satisfaction = compliant product + good quality + delivery within budget and schedule  

―A product‗s quality is a function of how much it changes the world for the better.‖  

SOFTWARE QUALITY  

Software quality can be defined as: An effective software process applied in a manner that 

creates a useful product that provides measurable value for those who produce it and those who 

use it.  

Garvin’s Quality Dimensions  

There are 8 dimensions of quality:  

(1) Performance Quality. Does the software deliver all content, functions, and features that are 

specified as part of the requirements model in a way that provides value to the end user?  

(2) Feature quality. Does the software provide features that surprise and delight first-time end 

users?  

(3) Reliability. Does the software deliver all features and capability without failure? Is it 

available when it is needed? Does it deliver functionality that is error free?  

(4) Conformance. Does the software conform to local and external software standards that are 

relevant to the application?  



 

Department of Computer Science and Engineering,NCERC,pampady Page 210 
 

(5) Durability. Will changes cause the error rate or reliability to degrade with time?  

(6) Serviceability. Can the software be maintained (changed) or corrected (debugged) in an 

acceptably short time period?  

(7) Aesthetics. Each of us has a different and very subjective vision of what is aesthetic. An 

aesthetic entity has certain elegance, a unique flow, and an obvious ―presence‖ that are hard to 

quantify but are evident nonetheless. Aesthetic software has these characteristics.  

(8) Perception. In some situations, you have a set of prejudices that will influence your 

perception of quality. For example, if you are introduced to a software product that was built by 

a vendor who has produced poor quality in the past, your guard will be raised and your 

perception of the current software product quality might be influenced negatively. Similarly, if a 

vendor has an excellent reputation, you may perceive quality, even when it does not really exist.  

 

McCall’s Quality Factors  

 

 

 

 

 Reliability. The extent to which a program can be expected to perform its intended 

function with required precision.  

 Efficiency. The amount of computing resources and code required by a program to 

perform its function.  

 Integrity. Extent to which access to software or data by unauthorized persons can be 

controlled.  

 Usability. Effort required to learn, operate, prepare input for, and interpret output of a 

program.  

 Maintainability. Effort required to locate and fix an error in a program.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 211 
 

 Flexibility. Effort required to modify an operational program.  

 Testability. Effort required to test a program to ensure that it performs its intended 

function.  

 Portability. Effort required to transfer the program from one hardware and/or software 

system environment to another.  

 Reusability. Extent to which a program [or parts of a program] can be reused in other 

applications—related to the packaging and scope of the functions that the program 

performs.  

 Interoperability. Effort required to couple one system to another.  

 

ISO 9126 Quality Factors  
 

ISO 9126 standard identifies six key quality attributes:  

(1) Functionality. The degree to which the software satisfies stated needs as indicated by the 

following sub attributes: suitability, accuracy, interoperability, compliance, and security.  

(2) Reliability. The amount of time that the software is available for use as indicated by the 

following sub attributes: maturity, fault tolerance, recoverability.  

(3) Usability. The degree to which the software is easy to use as indicated by the following sub 

attributes: understandability, learnability, operability.  

(4) Efficiency. The degree to which the software makes optimal use of system resources as 

indicated by the following sub attributes: time behavior, resource behavior.  

(5) Maintainability. The ease with which repair may be made to the software as indicated by the 

following sub attributes: analyzability, changeability, stability, testability.  

(6) Portability. The ease with which the software can be transposed from one environment to 

another as indicated by the following sub attributes: adaptability, install ability, conformance, 

replace ability.  

 

THE SOFTWARE QUALITY DILEMMA  
 

If you produce a software system that has terrible quality, you lose because no one will want to 

buy it. If on the other hand you spend infinite time, extremely large effort, and huge sums of 

money to build the absolutely perfect piece of software, then it‗s going to take so long to 

complete and it will be so expensive to produce that you‗ll be out of business anyway. So people 

in industry try to get to that magical middle ground where the product is good enough not to be 

rejected right away.  

“Good Enough” Software:  

 

What is ―good enough‖? Good enough software delivers high-quality functions and features that 

end users desire, but at the same time it delivers other more obscure or specialized functions and 

features that contain known bugs. The software vendor hopes that the vast majority of end users 

will overlook the bugs because they are so happy with other application functionality.  

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 212 
 

The Cost of Quality:  

We know that quality is important, but it costs us time and money—too much time and money to 

get the level of software quality we really want. The cost of quality includes all costs incurred in 

the pursuit of quality or in performing quality-related activities and the downstream costs of lack 

of quality. The cost of quality can be divided into costs associated with prevention, appraisal, and 

failure.  

 Prevention costs include (1) the cost of management activities required to plan and 

coordinate all quality control and quality assurance activities, (2) the cost of added 

technical activities to develop complete requirements and design models, (3) test 

planning costs, and (4) the cost of all training associated with these activities.  

 Appraisal costs include activities to gain insight into product condition the ―first time 

through‖ each process. Examples of appraisal costs include: (1) the cost of conducting 

technical reviews for software engineering work products, (2) the cost of data collection 

and metrics evaluation, and (3) the cost of testing and debugging  

 Failure costs are those that would disappear if no errors appeared before shipping a 

product to customers. Failure costs may be subdivided into internal failure costs and 

external failure costs. Internal failure costs are incurred when you detect an error in a 

product prior to shipment. Internal failure costs include: (1) the cost required to perform 

rework (repair) to correct an error, (2) the cost that occurs when rework inadvertently 

generates side effects that must be mitigated, and (3) the costs associated with the 

collection of quality metrics that allow an organization to assess the modes of failure. 

External failure costs are associated with defects found after the product has been 

shipped to the customer. Examples of external failure costs are complaint resolution, 

product return and replacement, help line support, and labour costs associated with 

warranty work.  

 

Risks:  
 

Low-quality software increases risks for both the developer and the end user.  

 

Negligence and Liability:  

Work begins with the best of intentions on both sides, but by the time the system is delivered, 

things have gone bad. The system is late, fails to deliver desired features and functions, is error-

prone, and does not meet with customer approval. In most cases, the customer claims that the 

developer has been negligent and is therefore not entitled to payment. The developer often 

claims that the customer has repeatedly changed its requirements and has subverted the 

development partnership in other ways. In every case, the quality of the delivered system comes 

into question.  

Quality and Security:  

As the criticality of Web-based and mobile systems grows, application security has become 

increasingly important. To build a secure system, you must focus on quality, and that focus must 

begin during design.  

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 213 
 

The Impact of Management Actions:  

As each project task is initiated, a project leader will make decisions that can have a significant 

impact on product quality.  

 Estimation decisions. A software team is rarely given the luxury of providing an 

estimate for a project before delivery dates are established and an overall budget is 

specified. Instead, the team conducts a ―sanity check‖ to ensure that delivery dates and 

milestones are rational. As a consequence, shortcuts are taken, activities that lead to 

higher-quality software may be skipped, and product quality suffers. If a delivery date is 

irrational, it is important to hold your ground. Explain why you need more time, or 

alternatively, suggest a subset of functionality that can be delivered (with high quality) in 

the time allotted.  

 

 Scheduling decisions. When a software project schedule is established, tasks are 

sequenced based on dependencies. For example, because component A depends on 

processing that occurs within components B, C, and D, component A cannot be 

scheduled for testing until components B, C, and D are fully tested. A project schedule 

would reflect this. But if time is very short, and A must be available for further critical 

testing, you might decide to test A without its subordinate components (which are 

running slightly behind schedule), so that you can make it available for other testing that 

must be done before delivery. After all, the deadline looms. As a consequence, A may 

have defects that are hidden, only to be discovered much later. Quality suffers.  

 Risk-oriented decisions. Risk management is one of the key attributes of a successful 

software project.  

 

ACHIEVING SOFTWARE QUALITY  
 

Software quality doesn‗t just appear. It is the result of good project management and solid 

software engineering practice. Management and practice are applied within the context of four 

broad activities that help a software team achieve high software quality:  

1. Software engineering methods  

2. Project management techniques  

3. Quality control actions  

4. Software quality assurance.  

 

Software Engineering Methods  

If you expect to build high-quality software, you must understand the problem to be solved. You 

must also be capable of creating a design that conforms to the problem while at the same time 

exhibiting characteristics that lead to software that exhibits the quality dimensions. There are a 

wide array of concepts and methods for that. If you apply those concepts and adopt appropriate 

analysis and design methods, the likelihood of creating high-quality software will increase 

substantially.  

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 214 
 

Project Management Techniques  

Poor management decisions can impact the quality of the project. Software quality can be 

improved if:  

(1) a project manager uses estimation to verify that delivery dates are achievable  

(2) schedule dependencies are understood and the team resists the temptation to use shortcuts  

(3) risk planning is conducted  

 

 Quality Control  

Quality control encompasses a set of software engineering actions that help to 

ensure that each work product meets its quality goals. A combination of 

measurement and feedback allows a software team to tune the process when any 

of these work products fail to meet quality goals.  

 

 

 Quality Assurance  

Quality assurance consists of a set of auditing and reporting functions that assess 

the effectiveness and completeness of quality control actions. The goal of quality 

assurance is to provide management and technical staff with the data necessary to 

be informed about product quality, thereby gaining insight and confidence that 

actions to achieve product quality are working.  
 

ELEMENTS OF SOFTWARE QUALITY ASSURANCE  
 

Software quality assurance (SQA) is often known as Quality Management. It encompasses a 

broad range of concerns and activities (also known as the elements of SQA).  

 

Standards. The IEEE, ISO, and other standards organizations have produced a broad array of 

software engineering standards. The job of SQA is to ensure that standards that have been 

adopted are followed and that all work products conform to them.  

 

Reviews and audits. Technical reviews are a quality control activity performed by software 

engineers for software engineers. Their intent is to uncover errors. Audits are a type of review 

performed by SQA personnel with the intent of ensuring that quality guidelines are being 

followed for software engineering work. For example, an audit of the review process might be 

conducted to ensure that reviews are being performed in a manner that will lead to the highest 

likelihood of uncovering errors.  

 

Testing. Software testing is a quality control function that has one primary goal—to find errors. 

The job of SQA is to ensure that testing is properly planned and efficiently conducted so that it 

has the highest likelihood of achieving its primary goal.  

 

Error/defect collection and analysis. SQA collects and analyzes error and defect data to better 

understand how errors are introduced and what software engineering activities are best suited to 

eliminating them.  

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 215 
 

Change management. If change is not properly managed, change can lead to confusion, and 

confusion almost always leads to poor quality. SQA ensures that adequate change management 

practices have been instituted.  

 

Education. Every software organization wants to improve its software engineering practices. A 

key contributor to improvement is education of software engineers, their managers, and other 

stakeholders.  

 

Vendor management. Three categories of software are acquired from external software 

vendors— shrink-wrapped packages (e.g., Microsoft Office), a tailored shell that provides a 

basic skeletal structure that is custom tailored to the needs of a purchaser, and contracted 

software that is custom designed and constructed from specifications provided by the customer 

organization. The job of the SQA organization is to ensure that high-quality software results by 

suggesting specific quality practices that the vendor should follow (when possible), and 

incorporating quality mandates as part of any contract with an external vendor.  

Security management. SQA ensures that appropriate process and technology are used  

to achieve software security.  

 

Safety. Because software is almost always a pivotal component of human-rated systems (e.g., 

automotive or aircraft applications), the impact of hidden defects can be catastrophic. SQA may 

be responsible for assessing the impact of software failure and for initiating those steps required 

to reduce risk.  

 

Risk management. The SQA organization ensures that risk management activities are properly 

conducted and that risk-related contingency plans have been established.  

 

SQA TASKS (What is the role of SQA group?)  

The Software Engineering Institute (SEI) recommends a set of SQA activities that address 

quality assurance planning, oversight, record keeping, analysis, and reporting. These activities 

are performed (or facilitated) by an independent SQA group that:  

 

Prepares an SQA plan for a project. The plan is developed as part of project planning and is 

reviewed by all stakeholders. Quality assurance activities performed are governed by the plan. 

The plan identifies evaluations to be performed, audits and reviews to be conducted, standards 

that are applicable to the project, procedures for error reporting and tracking, work products that 

are produced by the SQA group, and feedback that will be provided to the software team.  

 

Participates in the development of the project’s software process description. The software 

team selects a process for the work to be performed. The SQA group reviews the process 

description for compliance with organizational policy, internal software standards, externally 

imposed standards (e.g., ISO-9001), and other parts of the software project plan.  

 

Reviews software engineering activities to verify compliance with the defined software 

process. The SQA group identifies, documents, and tracks deviations from the process and 

verifies that corrections have been made.  

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 216 
 

Audits designated software work products to verify compliance with those defined as part 

of the software process. The SQA group reviews selected work products; identifies, documents, 

and tracks deviations; verifies that corrections have been made; and periodically reports the 

results of its work to the project manager.  

 

Ensures that deviations in software work and work products are documented and handled 

according to a documented procedure. Deviations may be encountered in the project plan, 

process description, applicable standards, or software engineering work products.  

 

Records any noncompliance and reports to senior management.  

Noncompliance items are tracked until they are resolved.  

SQA Goals:  

 

 

 

Requirements quality. The correctness, completeness, and consistency of the requirements 

model will have a strong influence on the quality of all work products that follow. SQA must 

ensure that the software team has properly reviewed the requirements model to achieve a high 

level of quality.  

 

Design quality. Every element of the design model should be assessed by the software team to 

ensure that it exhibits high quality and that the design itself conforms to requirements. SQA 

looks for attributes of the design that are indicators of quality.  

 

Code quality. Source code and related work products must conform to local coding standards 

and exhibit characteristics that will facilitate maintainability. SQA should isolate those attributes 

that allow a reasonable analysis of the quality of code.  

 

Quality control effectiveness. A software team should apply limited resources in a way that has 

the highest likelihood of achieving a high-quality result. SQA analyses the allocation of 

resources for reviews and testing to assess whether they are being allocated in the most effective 

manner.  

 

SOFTWARE PROCESS IMPROVEMENT (SPI)  
 

The term software process improvement (SPI) implies many things. First, it implies that elements 

of an effective software process can be defined in an effective manner; second, that an existing 

organizational approach to software development can be assessed against those elements; and 

third, that a meaningful strategy for improvement can be defined. In short, SPI implies a defined 

software process, an organizational approach, and a strategy for improvement. The SPI strategy 

transforms the existing approach to software development into something that is more focused, 

more repeatable, and more reliable (in terms of the quality of the product produced and the 

timeliness of delivery).  

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 217 
 

Approaches to SPI  
 

An organization can choose one of the many SPI frameworks. An SPI framework defines:  

1. a set of characteristics that must be present if an effective software process is to be achieved  

2. a method for assessing whether those characteristics are present  

3. a mechanism for summarizing the results of any assessment  

4. a strategy for assisting a software organization in implementing those process characteristics 

that have been found to be weak or missing.  

 

An SPI framework assesses the ―maturity‖ of an organization‗s software process and provides a 

qualitative indication of a maturity level.  

 

 
Fig: Elements of a SPI framework 

There is no universal SPI framework. The SPI framework that is chosen by an organization 

reflects the constituency that is championing the SPI effort.  

There are six different SPI support constituencies:  

 

1. Quality certifiers: Process improvement efforts championed by this group focus on the 

following relationship:  

 

Quality ( Process ) ⇒ Quality ( Product )  



 

Department of Computer Science and Engineering,NCERC,pampady Page 218 
 

Their approach is to emphasize assessment methods and to examine a well-defined set of 

characteristics that allows them to determine whether the process exhibits quality. They are most 

likely to adopt a process framework such as the CMMI, SPICE, TickIT, or Bootstrap.  

 

 

2. Formalists. This group wants to understand process workflow. To accomplish this, they use 

process modeling languages (PMLs) to create a model of the existing process and then design 

extensions or modifications that will make the process more effective.  

 

 

 

3. Tool advocates. This group insists on a tool-assisted approach to SPI  

 

4. Practitioners. This constituency uses a pragmatic approach, ―emphasizing mainstream 

project-, quality- and product management, applying project-level planning and metrics, but with 

little formal process modeling or enactment support‖  

 

5. Reformers. The goal of this group is organizational change that might lead to a better 

software process. They tend to focus more on human issues and emphasize measures of human 

capability.  

 

6. Ideologists. This group focuses on the suitability of a particular process model for a specific 

application domain or organizational structure. Rather than typical software process models (e.g., 

iterative models), ideologists would have a greater interest in a process that would support reuse 

or reengineering.  

 

Maturity Models  
 

A maturity model is applied within the context of an SPI framework. The intent of the maturity 

model is to provide an overall indication of the ―process maturity‖ exhibited by a software 

organization. That is, an indication of the quality of the software process, the degree to which 

practitioners understand and apply the process.  

There are four levels of organizational Immaturity.  

Level 0, Negligent —Failure to allow successful development process to succeed.  

Level 1, Obstructive —Counterproductive processes are imposed.  

Level 2, Contemptuous —Disregard for good software engineering practices, separation between 

software development activities and software process improvement activities, lack of a training 

program.  

Level 3, Undermining —Total neglect of own charter, conscious discrediting of peer 

organizations software process improvement efforts. These activities reward failure and poor 

performance.  

 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 219 
 

THE SPI PROCESS  
 

The Software Engineering Institute has developed IDEAL— ―an organizational improvement 

model that serves as a road map for SPI activities. There are five SPI activities:  

1. Assessment and Gap analysis  

2. Education and Training  

3. Selection and Justification  

4. Installation/Migration  

5. Evaluation  

 

 

1. Assessment and Gap analysis  
 

Assessment: The intent of assessment is to uncover both strengths and weaknesses in the way 

your organization applies the existing software process and the software engineering practices 

that populate the process. Assessment examines a wide range of actions and tasks that will lead 

to a high-quality process. As the process assessment is conducted, you should also focus on the 

following issues:  

 Consistency. Are important activities, actions, and tasks applied consistently across all 

software projects and by all software teams? 

 Sophistication. Are management and technical actions performed with a level of 

sophistication that implies a thorough understanding of best practice?  

 Acceptance. Is the software process and software engineering practice widely accepted 

by management and technical staff?  

 Commitment. Has management committed the resources required to achieve 

consistency, sophistication, and acceptance?  

 

 

Gap analysis: The difference between local application and best practice represents a ―gap‖ 

that offers opportunities for improvement.  

 

2. Education and Training  
 

A key element of any SPI strategy is education and training for practitioners, technical managers, 

and more senior managers. Three types of education and training should be conducted:  

 Generic software engineering concepts and methods  

 Specific technology and tools  

 Communication and quality-oriented topics.  

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 220 
 

3. Selection and Justification  
 

Once the initial assessment activity has been completed and education has begun, a software 

organization should begin to make choices.  

 First, you should choose the process model that best fits your organization, its 

stakeholders, and the software that you build.  

 You should decide which of the set of framework activities will be applied, the major 

work products that will be produced, and the quality assurance checkpoints that will 

enable your team to assess progress.  

 Next, develop an adaptable work breakdown for each framework activity, defining the 

task set that would be applied for a typical project.  

 

 

4. Installation/Migration  
 

Installation is the first point at which a software organization feels the effects of changes 

implemented as a consequence of the SPI road map. In some cases, an entirely new process is 

recommended for an organization. In other cases, changes associated with SPI are relatively 

minor, representing small, but meaningful modifications to an existing process model. Such 

changes are often referred to as process migration.  

Installation and migration are actually software process redesign (SPR) activities. SPR is 

concerned with identification, application, and refinement of new ways to dramatically improve 

and transform software processes. When a formal approach to SPR is initiated, three different 

process models are considered:  

(1) the existing (―as is‖) process  

(2) a transitional (―here to there‖) process  

(3) the target (―to be‖) process.  

 

 

5. Evaluation  
 

The evaluation activity assesses:  

 the degree to which changes have been instantiated and adopted  

 the degree to which such changes result in better software quality or other tangible 

process benefits  

 the overall status of the process and the organizational culture as SPI activities proceed.  

 

Both qualitative factors and quantitative metrics are considered during the evaluation activity. 

From a qualitative point of view, past management and practitioner attitudes about the software 

process can be compared to attitudes polled after installation of process changes. Quantitative 

metrics are collected from projects that have used the transitional or ―to be‖ process and 

compared with similar metrics that were collected for projects that were conducted under the 

―as is‖ process.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 221 
 

 

Risk Management for SPI:  
 

SPI is a risky undertaking. A software organization should manage risk at three key points in the 

SPI process:  

1. Prior to the initiation of the SPI road map  

2. During the execution of SPI activities (assessment, education, selection, installation)  

3. During the evaluation activity that follows the instantiation of some process characteristic.  

 

In general, the following categories can be identified for SPI risk factors:  

 budget and cost  

 content and deliverables  

 culture  

 maintenance of SPI deliverables  

 mission and goals  

 organizational management  

 organizational stability  

 process stakeholders  

 schedule for SPI development, SPI development environment, SPI development process, 

SPI project management, and SPI staff.  

 

Within each category, a number of generic risk factors can be identified. For example, some of 

the generic risk factors defined for the culture category are:  

 Attitude toward change, based on prior efforts to change  

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 222 
 

 Ability of organization members to manage meetings effectively  

Experience with quality programs, level of success  

Using the risk factors and generic attributes as a guide, a risk can be developed to isolate 

those risks that warrant further management attention.  

 

The  CMMI  

 
CMMI: Capability Maturity Model Integration  

Or the SEI-CMM (Software Engineering Institute – Capability Maturity Integration)  

The CMMI represents a process meta-model in two different ways:  

1. as a ―continuous‖ model  

2. as a ―staged‖ model.  

 

The continuous CMMI meta-model describes a process in two dimensions as illustrated in 

below figure.  

 

 

 

 
Fig: CMMI process capability profile 

 

Each process area (e.g., project planning or requirements management) is formally assessed 

against specific goals and practices and is rated according to the following capability levels:  



 

Department of Computer Science and Engineering,NCERC,pampady Page 223 
 

 Level 0: Incomplete — The process area (e.g., requirements management) is either not 

performed or does not achieve all goals and objectives defined by the CMMI for level 1 

capability for the process area.  

 Level 1: Performed — All of the specific goals of the process area (as defined by the 

CMMI) have been satisfied. Work tasks required to produce defined work products are 

being conducted.  

 Level 2: Managed — All capability level 1 criteria have been satisfied. In addition, all 

work associated with the process area conforms to an organizationally defined policy; all 

people doing the work have access to adequate resources to get the job done; stakeholders 

are actively involved in the process area as required; all work tasks and work products are 

―monitored, controlled, and reviewed; and are evaluated for adherence to the process 

description‖.  

Level 3: Defined — All capability level 2 criteria have been achieved. In addition, the 

process is ―tailored from the organization‗s set of standard processes‖  

 Level 4: Quantitatively managed — All capability level 3 criteria have been achieved. In 

addition, the process area is controlled and improved using measurement and quantitative 

assessment.  

 Level 5: Optimized — All capability level 4 criteria have been achieved. In addition, the 

process area is adapted and optimized using quantitative means to meet changing 

customer needs and to continually improve the efficacy of the process area under 

consideration.  

 The CMMI defines each process area in terms of ―specific goals‖ and the ―specific 

practices‖ required to achieve these goals. Specific goals establish the characteristics that 

must exist if the activities implied by a process area are to be effective. Specific practices 

refine a goal into a set of process-related activities.  

 

 

For example, project planning is one of eight process areas defined by the CMMI for ―project 

management‖ category. The specific goals (SG) and the associated specific practices (SP) 

defined for project planning are:  

 

SG 1 Establish Estimates  

SP 1.1-1 Estimate the Scope of the Project  

SP 1.2-1 Establish Estimates of Work Product and Task Attributes  

SP 1.3-1 Define Project Life Cycle  

SP 1.4-1 Determine Estimates of Effort and Cost  

SG 2 Develop a Project Plan  

SP 2.1-1 Establish the Budget and Schedule  

SP 2.2-1 Identify Project Risks  

SP 2.3-1 Plan for Data Management  

SP 2.4-1 Plan for Project Resources  

SP 2.5-1 Plan for Needed Knowledge and Skills  

SP 2.6-1 Plan Stakeholder Involvement  

SP 2.7-1 Establish the Project Plan  

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 224 
 

The staged CMMI model defines the same process areas, goals, and practices as the continuous 

model. The primary difference is that the staged model defines five maturity levels, rather than 

five capability levels. To achieve a maturity level, the specific goals and practices associated 

with a set of process areas must be achieved.  

 

THE ISO 9000 QUALITY STANDARDS (ISO 9001:2000 standard)  
 

ISO 9000 describes quality assurance elements in generic terms that can be applied to any 

business regardless of the products or services offered. (ISO stands for ―International 

Organization for Standardization”).  

To become registered to one of the quality assurance system models contained in ISO 9000, a 

company‗s quality system and operations are scrutinized by third party auditors for compliance 

to the standard and for effective operation. Upon successful registration, a company is issued a 

certificate from a registration body represented by the auditors. Semi-annual surveillance audits 

ensure continued compliance to the standard.  

 

The requirements delineated by ISO 9001:2008  

 Management responsibility  

 Quality system  

 Contract review  

 Design control  

 Document and data control  

 Product identification and traceability  

 Process control  

 Inspection and testing  

 Corrective and preventive action  

 Control of quality records  

 Internal quality audits  

 Training, servicing, and statistical techniques.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 225 
 

 
  



 

Department of Computer Science and Engineering,NCERC,pampady Page 226 
 

 

  



 

Department of Computer Science and Engineering,NCERC,pampady Page 227 
 

CLOUD-BASED SOFTWARE  
 

Cloud is a very large number of remote servers that are offered for rent by companies that own 

these servers. You may rent a server and install your own software, or you may pay for access to 

software products that are available on the cloud.  

The cloud servers that you rent can be started up and shut down as demand changes. This means 

that software that runs on the cloud can be scalable, elastic, and resilient (Figure below). These 

three factors (scalability, elasticity, and resilience) are the fundamental differences between 

cloud-based systems and those hosted on dedicated servers.  

 

 Scalability reflects the ability of your software to cope with increasing numbers of users. 

As the load on your software increases, the software automatically adapts to maintain the 

system performance and response time. Systems can be scaled by adding new servers or 

by migrating to a more powerful server. If a more powerful server is used, this is called 

scaling up. If new servers of the same type are added, this is called scaling out.  

 

 Elasticity is related to scalability but allows for scaling down as well as scaling up. That 

is, you can monitor the demand on your application and add or remove servers 

dynamically as the number of users changes.  

 

 Resilience means that you can design your software architecture to tolerate server 

failures. You can make several copies of your software available concurrently. If one of 

these fails, the others continue to provide a service.  

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 228 
 

The benefits of adopting cloud-based approach rather than buying your own servers for 

software development are shown in the below table.  

 

 
 

Virtualization and Containers  
 

All cloud servers are virtual servers. A virtual server runs on an underlying physical computer 

and is made up of an operating system plus a set of software packages that provide the server 

functionality required. The general idea is that a virtual server is a stand-alone system that can 

run on any hardware in the cloud. This ―run anywhere‖ characteristic is possible because the 

virtual server has no external dependencies. An external dependency means you need some 

software, that you are not developing yourself. For example, if you are developing in Python, 

you need a Python compiler, a Python interpreter, various Python libraries, and so on.  

Virtual machines (VMs) can be used to implement virtual servers (Figure below).  



 

Department of Computer Science and Engineering,NCERC,pampady Page 229 
 

 
Fig: Implementing a virtual server as a virtual machine  

Hypervisor provides a hardware emulation that simulates the operation of the underlying 

hardware. Several of these hardware emulators share the physical hardware and run in parallel. 

You can run an operating system and then install server software on each hardware emulator.  

The advantage of using a virtual machine to implement virtual servers is that you have exactly 

the same hardware platform as a physical server. You can therefore run different operating 

systems on virtual machines that are hosted on the same computer. For example, the above figure 

shows that Linux and Windows can run concurrently on separate VMs.  

 

Why software companies use container instead of virtual machines?  
If you are running a cloud-based system with many instances of applications or services, these all 

use the same operating system, you can use a simpler virtualization technology called 

‗containers‗.  

Containers are an operating system virtualization technology that allows independent servers to 

share a single operating system. They are particularly useful for providing isolated application 

services where each user sees their own version of an application.  

Using containers dramatically speeds up the process of deploying virtual servers on the cloud. 

Containers are usually megabytes in size, whereas VMs are gigabytes. Containers can be started 

up and shut down in a few seconds rather than the few minutes required for a VM. Many 

companies that provide cloud-based software have now switched from VMs to containers 

because containers are faster to load and less demanding of machine resources. These containers 

are managed by the means of Dockers.  

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 230 
 

 
Fig: Using containers to provide isolated services 

Docker: Docker is a container management system that allows users to define the software to be 

included in a container as a Docker image. It also includes a run-time system that can create and 

manage containers using these Docker images. Below figure shows the different elements of the 

Docker container system and their interactions. The function of each of the elements in the 

Docker container system is shown the table followed.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 231 
 

 
Fig: The Docker container system 

 

 
Table: The elements of the Docker container system  

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 232 
 

What are the benefits of containers?  

1. They solve the problem of software dependencies.  

2. You don‗t have to worry about the libraries and other software on the application server 

being different from those on your development server. Instead of shipping your product 

as stand-alone software, you can ship a container that includes all of the support software 

that your product needs.  

3. They provide a mechanism for software portability across different clouds.  

4. Docker containers can run on any system or cloud provider where the Docker daemon is 

available.  

5. They provide an efficient mechanism for implementing software services and so support 

the development of service-oriented architectures.  

6. They simplify the adoption of DevOps.  

 

EVERYTHING AS A SERVICE  
 

The idea of a service that is rented rather than owned is fundamental to cloud computing. Instead 

of owning hardware, you can rent the hardware that you need from a cloud provider. If you have 

a software product, you can use that rented hardware to deliver the product to your customers. In 

cloud computing, this has been developed into the idea of ―everything as a service.‖  

There are three levels where everything as a service is most relevant:  

1. Infrastructure as a service (IaaS)  

2. Platform as a service (PaaS)  

3. Software as a service (SaaS)  

 
Fig: Everything as a service 

 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 233 
 

Infrastructure as a service (IaaS) This is a basic service level that all major cloud providers 

offer. They provide different kinds of infrastructure service, such as a computer service, a 

network service, and a storage service. These infrastructure services may be used to implement 

virtual cloud-based servers.  

 

The key benefits of using IaaS:  

 You don‗t incur the capital costs of buying hardware  

 You can easily migrate your software from one server to a more powerful server  

 You can add more servers if you need to as the load on your system increases.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 234 
 

Platform as a service (PaaS) This is an intermediate level where you use libraries and 

frameworks provided by the cloud provider to implement your software. These provide access to 

a range of functions, including SQL and NoSQL databases. Using PaaS makes it easy to develop 

auto-scaling software. You can implement your product so that as the load increases, additional 

compute and storage resources are added automatically.  

 

Software as a service (SaaS) Your software product runs on the cloud and is accessed by users 

through a web browser or mobile app. This type of cloud service includes—mail services such as 

Gmail, storage services such as Dropbox, social media services such as Twitter, and so on.  

 

System management responsibilities of IaaS, PaaS and SaaS  

 If you are using IaaS, you have the responsibility for installing and managing the 

database, the system security, and the application.  

 If you use PaaS, you can devolve responsibility of managing the database and security to 

the cloud provider.  

 In SaaS, assuming that a software vendor is running the system on a cloud, the software 

vendor manages the application. Everything else is the cloud provider‗s responsibility.  

 

 

SOFTWARE AS A SERVICE  
 

If you deliver your software product as a service, you run the software on your servers, which 

you may rent from a cloud provider. Customers don‗t have to install software, and they access 

the remote system through a web browser or dedicated mobile app (Figure below). The payment 

model for SaaS is usually a subscription. Users pay a monthly fee to use the software.  

 
Fig: Software as a service 



 

Department of Computer Science and Engineering,NCERC,pampady Page 235 
 

Many software providers deliver their software as a cloud service, but also allow users to 

download a version of the software so that they can work without a network connection. For 

example, Adobe offers the Lightroom photo management software as both a cloud service and a 

download that runs on the user‗s own computer. This gets around the problem of reduced 

performance due to slow network connections.  

Benefits of SaaS for software product providers:  

 
 

Advantages (Benefits) and disadvantages of SaaS for customers:  
 

One of the most significant business benefits of using SaaS is that customers do not incur the 

capital costs of buying servers or the software itself. However, customers have to continue to 

pay, even if they rarely use the software.  

The universal use of mobile devices means that customers want to access software from these 

devices as well as from desktop and laptop computers. People can use the software from multiple 

devices without having to install the software in advance. However, this may mean that software 

developers have to develop mobile apps for a range of platforms in order to maintain their 

customer base.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 236 
 

A further benefit of SaaS for customers is that they don‗t have to employ staff to install and 

update the system. However, this may lead to a loss of local expertise. A lack of expertise may 

make it more difficult for customers to revert to self-hosted software if they need to do so.  

A characteristic of SaaS is that updates can be delivered quickly. New features are immediately 

available to all customers. However, customers have no control over when software upgrades are 

installed.  

Other disadvantages of SaaS are related to storage and data management issues. These issues are 

given in the below table.  

 
Table: Data storage and management issues for SaaS 



 

Department of Computer Science and Engineering,NCERC,pampady Page 237 
 

Design issues for SaaS: (The factors that you have to consider while designing the software)  

 

A software product may be designed so that some features are executed locally in the user‗s 

browser or mobile app and some on a remote server. Local execution reduces network traffic and 

so increases user response speed. This is useful when users have a slow network connection.  

 

On all shared systems, users have to authenticate themselves to show that they are accredited to 

use the system. You can set up your own authentication system, but this means users have to 

remember another set of authentication credentials. People don‗t like this, so for individual users, 

many systems allow authentication using the user‗s Google, Facebook, or LinkedIn credentials.  

 

Information leakage is a particular risk for cloud-based software. If you have multiple users from 

multiple organizations, a security risk is that information leaks from one organization to another. 

So you need to be very careful in designing your security system to avoid it.  

 

Multi-tenancy means that the system maintains the information from different organizations in a 

single repository rather than maintaining separate copies of the system and database. This can 

lead to more efficient operation. However, the developer has to design software so that each 

organization sees a virtual system that includes its own configuration and data. In a multi-

instance system, each customer has their own instance of the software and its database.  

 
 

 

 

 

 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 238 
 

MICROSERVICES ARCHITECTURE  
(Microservices, Microservice Architecture, Microservice Deployment)  

 

Software Service:  

A software service is a software component that can be accessed from remote computers over the 

Internet. Given an input, a service produces a corresponding output, without side effects. The 

service is accessed through its published interface and all details of the service  



 

Department of Computer Science and Engineering,NCERC,pampady Page 239 
 

implementation are hidden. The manager of a service is called the service provider, and the user 

of a service is called a service requestor. Services do not maintain any internal state. State 

information is either stored in a database or is maintained by the service requestor.  

Microservices  

Micro services are small-scale, stateless services that have a single responsibility. Software 

products that use microservices are said to have a microservices architecture. A microservices 

architecture is based on services that are fine-grain components with a single responsibility. If 

you need to create cloud-based software products, then it is recommend to use a microservice 

architecture.  

Example of microservices  

Consider a system that uses an authentication module that provides the following features:  

mobile (cell) phone number, and email address;  

 

-factor authentication using code sent to mobile phone;  

—for example, ability to change password or mobile phone 

number.  

 

In a microservices architecture, these features are too large to be microservices. To identify the 

microservices that might be used in the authentication system, you need to break down the 

coarse-grain features into more detailed functions. Below figure shows what these functions 

might be for user registration and UID/password authentication.  

Fig: Functional breakdown of authentication features  

  
Below figure shows the microservices that could be used to implement user authentication.  

  



 

Department of Computer Science and Engineering,NCERC,pampady Page 240 
 

Fig: 

Figure: Authentication microservices 



 

Department of Computer Science and Engineering,NCERC,pampady Page 241 
 

 

Characteristics of microservices are given below:  

 

 Microservices communicate by exchanging messages.  

 A well-designed microservice should have high cohesion and low coupling.  

 Coupling is a measure of the number of relationships that one component has with other 

components in the system. Low coupling means that components do not have many 

relationships with other components.  

 Cohesion is a measure of the number of relationships that parts of a component have 

with each other. High cohesion means that all of the component parts that are needed to 

deliver the component‗s functionality are included in the component.  

 Low coupling is important in microservices because it leads to independent services.  

 High cohesion is important because it means that the service does not have to call lots of 

other services during execution. Calling other services involves communications 

overhead, which can slow down a system.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 242 
 

The aim of developing highly cohesive services has led to a fundamental principle that underlies 

microservice design: the ―single responsibility principle.‖ Each element in a system should do 

one thing only. However, the problem with this is that ―one thing only‖ is difficult to define in a 

way that is applicable to all services.  

If you take the single responsibility principle literally, you would implement separate services for 

creating and changing a password and for checking that a password is correct. However, these 

simple services would all have to use a shared password database. This is undesirable because it 

increases the coupling between these services. Therefore responsibility should not always mean a 

single, functional activity. In this case, we can interpret a single responsibility as the 

responsibility to maintain stored passwords.  

―Microservices‖ are small-scale components, so developers often ask ―How big should a 

microservice be?‖  

development team in two weeks or less.  

hould be such that the whole team can be fed by no more than two large pizzas 

(Amazon‗s guideline). This places an upper limit on the team size of eight to ten people 

(depending on how hungry they are).  

 

The independence of microservices means that, each service has to include support code. 

These support codes are:  

 
Message management code in a microservice is responsible for processing incoming and 

outgoing messages. Incoming messages have to be checked for validity. Outgoing messages have 

to be packed into the correct format for service communication.  

Failure management code in a microservice has two concerns. First, it has to cope with 

circumstances where the microservice cannot properly complete a requested operation. Second, 

if external interactions are required, such as a call to another service, it has to handle the situation 

where that interaction does not succeed because the external service returns an error or does not 

reply.  

Data consistency management is needed when the data used in a microservice are also used by 

other services. In those cases, there needs to be a way of communicating data updates between 

services and ensuring that the changes made in one service are reflected in all services that use 

the data.  

UI implementation: For complete independence, each microservice should maintain its own 

user interface.  

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 243 
 

 

MICROSERVICES ARCHITECTURE  
 

A microservices architecture is a tried and tested way of implementing a logical software 

architecture. This architectural style aims to address two fundamental problems with monolithic 

architecture:  

1. When a monolithic architecture is used, the whole system has to be rebuilt, retested, and re-

deployed when any change is made. This can be a slow process, as changes to one part of the 

system can adversely affect other components. Frequent application updates are therefore 

impossible.  

 

2. As the demand on the system increases, the whole system has to be scaled, even if the demand 

is localized to a small number of system components that implement the most popular system 

functions.  

 

Architectural design decisions  

 
Fig: Key design issues for microservices architecture  

One of the most important jobs for a system architect is to decide how the overall system should 

be decomposed into a set of microservices. For that there are some general guidelines:  

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 244 
 

 

1. Balance fine-grain functionality and system performance: If each of your services offers 

only a single, very specific service, however, it is inevitable that you will need to have more 

service communications to implement user functionality. This slows down a system.  

 

2. Follow the “common closure principle”: This means that elements of a system that are likely 

to be changed at the same time should be located within the same service.  

 

3. Associate services with business capabilities: A business capability is a discrete area of 

business functionality that is the responsibility of an individual or a group. For example, the 

provider of a photo-printing system will have a group responsible for sending photos to users 

(dispatch capability), a set of printing machines (print capability), someone responsible for 

finance (payment service), and so on. You should identify the services that are required to 

support each business capability.  

 

4. Design services so that they have access to only the data that they need  

 

Service communications:  

Services communicate by exchanging messages. These messages include information about the 

originator of the message as well as the data that are the input to or output from the request.  

While establishing a standard for communication, the following key decisions must be taken:  

 

 

 

 

In a synchronous interaction, service A issues a request to service B. Service A then suspends 

processing while service B is processing the request. It waits until service B has returned the 

required information before continuing execution.  

In an asynchronous interaction, service A issues the request that is queued for processing by 

service B. Service A then continues processing without waiting for service B to finish its 

computations. Sometime later, service B completes the earlier request from service A and queues 

the result to be retrieved by service A. Service A therefore has to check its queue periodically to 

see if a result is available.  

Synchronous interaction is less complex than asynchronous interaction. Consequently, 

synchronous programs are easier to write and understand. There will probably be fewer difficult-

to-find bugs. On the other hand, asynchronous interaction is often more efficient than 

synchronous interaction, as services are not idle while waiting for a response.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 245 
 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 246 
 

Fig: Synchronous and asynchronous microservice interaction  

 

Direct service communication requires that interacting services know each other‗s addresses. 

The services interact by sending requests directly to these addresses. Indirect communication 

involves naming the service that is required and sending that request to a message broker 

(sometimes called a message bus). The message broker is then responsible for finding the service 

that can fulfill the service request. Below figure shows these communication alternatives.  

 

Direct service communication is usually faster, but it means that the requesting service must 

know the URI (uniform resource identifier) of the requested service. If, that URI changes, then 

the service request will fail. Indirect communication requires additional software (a message 

broker) but services are requested by name rather than a URI. The message broker finds the 

address of the requested service and directs the request to it  

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 247 
 

Fig: Direct and indirect service communication  

Data distribution and sharing:  

Each microservice should manage its own data. In an ideal world, the data managed by each 

service would be completely independent. There would be no need to propagate data changes 

made in one service to other services. However, in the real world, complete data independence is 

impossible.  

You need to think about the microservices as an interacting system rather than as individual 

units. This means:  

1. You should isolate data within each system service with as little data sharing as possible.  

2. If data sharing is unavoidable, you should design microservices so that most sharing is read-

only, with a minimal number of services responsible for data updates.  

3. If services are replicated in your system, you must include a mechanism that can keep the 

database copies used by replica services consistent.  

 

Access to the shared data is managed by a database management system (DBMS). Failure of 

services in the system and concurrent updates to shared data have the potential to cause database 

inconsistency.  

Without controls, if services A and B are updating the same data, the value of that data depends 

on the timing of the updates. However, by using ACID properties, the DBMS serializes the 

updates and avoids inconsistency.  

Systems that use microservices have to be designed to tolerate some degree of data 

inconsistency. The databases used by different services or service replicas need not be 

completely consistent all of the time.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 248 
 

Two types of inconsistency have to be managed:  

1. Dependent data inconsistency The actions or failures of one service can cause the data 

managed by another service to become inconsistent.  

2. Replica inconsistency Several replicas of the same service may be executing concurrently. 

These all have their own database copy and each updates its own copy of the service data. You 

need a way of making these databases ―eventually consistent‖ so that all replicas are working on 

the same data.  

 

Service coordination:  

Most user sessions involve a series of interactions in which operations have to be carried out in a 

specific order. This is called a workflow. As an example, the workflow for UID/password 

authentication in which there is a limited number of allowed authentication attempts is shown in 

below figure.  

 
Fig: Authentication workflow 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 249 
 

In this example workflow, the user is allowed three login attempts before the system indicates 

that the login has failed.  

 

One way to implement this workflow is to define the workflow explicitly (either in a workflow 

language or in code) and to have a separate service that executes the workflow by calling the 

component services in turn. This is called ―orchestration,‖ reflecting the notion that an 

orchestra conductor instructs the musicians when to play their parts. In an orchestrated system, 

there is an overall controller.  

An alternative approach is called “choreography.‖ This term is derived from dance rather than 

music, where there is no ―conductor‖ for the dancers. Rather, the dance proceeds as dancers 

observe one another. Their decision to move on to the next part of the dance depends on what the 

other dancers are doing.  

 
Fig: Orchestration and choreography 

 

Choreography depends on each service emitting an event to indicate that it has completed its 

processing. Other services watch for events and react accordingly when events are observed.  

There is no explicit service controller. To implement service choreography, you need additional 

software such as a message broker.  

 

A problem with service choreography is that there is no simple correspondence between the 

workflow and the actual processing that takes place. This makes choreographed workflows 

harder to debug. If a failure occurs during workflow processing, it is not immediately obvious 

what service has failed.  

 

Furthermore, recovering from a service failure is sometimes difficult to implement in a 

choreographed system.  

 

In an orchestrated approach, if a service fails, the controller knows which service has failed and 

where the failure has occurred in the overall process.  

 

 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 250 
 

 

Failure management:  
 

The three kinds of failure with in a microservices system are shown in the below table.  

 
 

The simplest way to report microservice failures is to use HTTP status codes, which indicate 

whether or not a request has succeeded.  

One way to discover whether a service that you are requesting is unavailable or running slowly is 

to put a timeout on the request. A timeout is a counter that is associated with the service requests 

and starts running when the request is made. Once the counter reaches some predefined value, 

such as 10 seconds, the calling service assumes that the service request has failed and acts 

accordingly.  

 

SERVICE DEPLOYMENT (MICROSERVICE DEPLOYEMENT)  
 

After a system has been developed and delivered, it has to be deployed on servers, monitored for 

problems, and updated as new versions become available. The development team is responsible 

for deployment and service management as well as software development. That is, in 

microservice architecture, we use the concepts of DevOps - a combination of Development and 

Operations, for software deployment.  

In this area, a good practise is to adopt a policy of continuous deployment. Continuous 

deployment means that as soon as a change to a service has been made and validated, the 

modified service is re-deployed.  

Continuous deployment depends on automation so that as soon as a change is committed, a 

series of automated activities is triggered to test the software. If the software ―passes‖ these 

tests, it then enters another automation pipeline that packages and deploys the software.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 251 
 

Containers are usually the best way to package a cloud service for deployment. Below figure is 

a simplified diagram of the continuous deployment process. 

 
Fig: A continuous deployment pipeline 

  



 

Department of Computer Science and Engineering,NCERC,pampady Page 252 
 

CONTENT BEYOND SYLLABUS 
 

 

 

1. Cloud Hypervisor. 

2. Edge computing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 253 
 

What is a Cloud Hypervisor?  

A Cloud Hypervisor is software that enables the sharing of cloud provider‘s physical compute 

and memory resources across multiple virtual machines (VMs). Originally created for mainframe 

computers in the 1960s, hypervisors gained wide popularity with the introduction of VMware for 

industry standard servers in the 1990s, enabling a single physical server to independently run 

multiple guest VMs each with their own operating systems (OSs) that are logically separate from 

each other. In this manner, problems or crashes in one guest VM have no effect on the other 

guest VMs, OSs, or the applications running on them. 

Although there are multiple types of VMs, they all perform the same task, enabling a single set 

of physical server hardware (including CPU, memory, storage, and peripherals) and enabling the 

simultaneous use by multiple instances of OSs, whether Windows, Linux, or both. 

Why is a Cloud Hypervisor important?  

Just as hypervisors make it possible to gain a new level of computer utilization, a Cloud 

Hypervisor is the underpinning of all cloud compute offerings, enabling VMs and containers to 

run side-by-side on a single server, whether those VMs belong to a single client or to multiple 

clients of the cloud provider. It is this multitenancy that powers the economics for most cloud 

compute offerings. 

Hypervisors and the VMs they support provide the portability that enables workloads to easily be 

migrated between cloud providers and on-premises servers. This enables organizations to rapidly 

scale from on-premises servers to cloud providers or to add more instances of applications 

already running in the cloud when spikes in demand occur. 

Cloud Hypervisors help cloud providers reduce the amount of space servers use, while reducing 

the amount of energy needed to power and cool the vast array of servers under their 

management. 

How does a Cloud Hypervisor work?  

Cloud Hypervisors abstract the underlying servers from ‗Guest‘ VMs and OSs. OS calls for 

server resources (CPU, memory, disk, print, etc) are intercepted by the Cloud Hypervisor which 

allocates resources and prevents conflicts. As a rule, guest VMs and OSs run in a less-privileged 

mode than the hypervisor so they cannot impact the operation of the hypervisor or other guest 

VMs 

There are two major classifications of Hypervisor: Bare metal or native (Type 1) and Hosted 

(Type 2). Type 1 Hypervisors run directly on host machine hardware with no OS beneath. These 

hypervisors communicate directly with the host machine resources. VMware ESXi and 

Microsoft Hyper-V are Type 1. 

 

https://www.vmware.com/topics/glossary/content/hypervisor.html


 

Department of Computer Science and Engineering,NCERC,pampady Page 254 
 

Type 2 Hypervisors usually run above the host machine OS and rely on the host OS for access to 

machine resources. They are easier to se up and manage since the OS is already in place, and 

thus Type 2 hypervisors are often used for home use and for testing VM functionality. VMware 

Player and VMware Workstation are Type 2 hypervisors. 

KVM (Kernel-based Virtual Machine) is a popular hybrid hypervisor with some Type 1 and 

Type 2 characteristics. This open-source hypervisor it built into Linux and lets Linux act as a 

Type 1 hypervisor and an OS at the same time. 

What are the Benefits of a Cloud Hypervisor?  

There are several benefits to using a hypervisor that hosts multiple virtual machines: 

Time to Use: Cloud Hypervisors enable VMs to be instantly spun up or down, as opposed to 

days or weeks required to deploy a bare metal server. This enables projects to be created and 

have teams working the same day. Once a project is complete, VMs can be terminated to save 

organizations from paying for unnecessary infrastructure. 

Utilization: Cloud Hypervisors enable several VMs to run on a single physical server and for all 

the VMs to share its resources. This improves the server utilization and saves on power, cooling, 

and real estate that is no longer needed for each individual VM. 

Flexibility: Most Cloud Hypervisors are Type 1 (Bare-metal) enabling guest VMs and OSs to 

execute on a broad variety of hardware, since the hypervisor abstracts the VMs from the 

underlying machine‘s drivers and devices. 

Portability: Since Cloud Hypervisors enable portability of workloads between VMs or between 

a VM and an organization‘s on-premises hardware. Applications that are seeing spikes in 

demand can simply access additional machines to scale as needed. 

Reliability: Hardware failures can be remediated by moving VMs to other machines, either at 

the cloud provider or in a private cloud or on-premises hardware. Once the failure is repaired 

workloads can fail back to ensure availability of application resources on the VM. 

What are Types of Hypervisors in Cloud Computing?  

There are two main hypervisor types, referred to as ―Type 1‖  ―bare metal‖) and ―Type 2‖ (or 

―hosted‖). A type 1 hypervisor acts like a lightweight operating system and runs directly on the 

host‘s hardware, while a type 2 hypervisor runs as a software layer on an operating system, like 

other computer programs. 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 255 
 

Cloud providers most commonly deploy a Type 1 or bare-metal hypervisor, where virtualization 

software is installed directly on the hardware where the operating system is normally installed. 

Because bare-metal hypervisors are isolated from the attack-prone operating system, they are 

extremely secure. In addition, they generally perform better and more efficiently than hosted 

hypervisors. For these reasons, most enterprise companies choose bare-metal hypervisors for 

data center computing needs. 

While bare-metal hypervisors run directly on the computing hardware, hosted or Type 2 

hypervisors run on top of the operating system (OS) of the host machine. Although hosted 

hypervisors run within the OS, additional (and different) operating systems can be installed on 

top of the hypervisor. The downside of hosted hypervisors is that latency is higher than bare-

metal hypervisors. This is because communication between the hardware and the hypervisor 

must pass through the extra layer of the OS. Hosted hypervisors are sometimes known as client 

hypervisors because they are most often used with end users and software testing, where higher 

latency is less of a concern. 

Both types of hypervisors can run multiple virtual servers for multiple tenants on one physical 

machine. Public cloud service providers lease server space on the different virtual servers to 

different companies. One server might host several virtual servers that are all running workloads 

for different companies. This type of resource sharing can result in a ―noisy neighbor‖ effect, 

when one of the tenants runs a large workload that interferes with the server performance for 

other tenants. It also poses more of a security risk than using a dedicated bare-metal server. 

A Cloud Hypervisor comparison of major cloud providers demonstrates their similarity. 

Amazon AWS EC2 uses a Cloud Hypervisor that is a customized version of the Xen hypervisor 

that takes advantage of paravirtualization for Linux guest VMs. 

The Google Cloud Platform (GCP) Cloud Hypervisor is also based on the open-source KVM 

hypervisor; Google also invests in additional security hardening and protection and contributes 

their changes back to the KVM project for the benefit of all. 

The Microsoft Azure Cloud Hypervisor is based on Microsoft Hyper-V, another Type 1 

hypervisor popular in Windows environments and customized for the Microsoft Azure platform. 

 

 

 

 

 

 

 

 

 

 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 256 
 

 

edge computing 

Edge computing is a distributed information technology (IT) architecture in which client data 

is processed at the periphery of the network, as close to the originating source as possible. 

Data is the lifeblood of modern business, providing valuable business insight and supporting 

real-time control over critical business processes and operations. Today's businesses are awash 

in an ocean of data, and huge amounts of data can be routinely collected from sensors and IoT 

devices operating in real time from remote locations and inhospitable operating environments 

almost anywhere in the world. 

But this virtual flood of data is also changing the way businesses handle computing. The 

traditional computing paradigm built on a centralized data center and everyday internet isn't 

well suited to moving endlessly growing rivers of real-world data. Bandwidth limitations, 

latency issues and unpredictable network disruptions can all conspire to impair such efforts. 

Businesses are responding to these data challenges through the use of edge computing 

architecture. 

In simplest terms, edge computing moves some portion of storage and compute resources out 

of the central data center and closer to the source of the data itself. Rather than transmitting 

raw data to a central data center for processing and analysis, that work is instead performed 

where the data is actually generated -- whether that's a retail store, a factory floor, a sprawling 

utility or across a smart city. Only the result of that computing work at the edge, such as real-

time business insights, equipment maintenance predictions or other actionable answers, is sent 

back to the main data center for review and other human interactions. 

Thus, edge computing is reshaping IT and business computing. Take a comprehensive look 

at what edge computing is, how it works, the influence of the cloud, edge use cases, tradeoffs 

and implementation considerations. 

https://www.techtarget.com/searchdatacenter/tip/4-essential-components-to-edge-data-center-maintenance
https://www.techtarget.com/searchdatacenter/tip/Build-a-migration-plan-for-enterprise-edge-infrastructure
https://www.techtarget.com/searchdatacenter/tip/Build-a-migration-plan-for-enterprise-edge-infrastructure


 

Department of Computer Science and Engineering,NCERC,pampady Page 257 
 

 
Edge computing brings data processing closer to the data source. 

 

How does edge computing work? 

Edge computing is all a matter of location. In traditional enterprise computing, data is produced 

at a client endpoint, such as a user's computer. That data is moved across a WAN such as the 

internet, through the corporate LAN, where the data is stored and worked upon by an enterprise 

application. Results of that work are then conveyed back to the client endpoint. This remains a 

proven and time-tested approach to client-server computing for most typical business 

applications. 

But the number of devices connected to the internet, and the volume of data being produced by 

those devices and used by businesses, is growing far too quickly for traditional data center 

infrastructures to accommodate. Gartner predicted that by 2025, 75% of enterprise-generated 

data will be created outside of centralized data centers. The prospect of moving so much data in 

situations that can often be time- or disruption-sensitive puts incredible strain on the global 

internet, which itself is often subject to congestion and disruption. 

 

 

https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders/


 

Department of Computer Science and Engineering,NCERC,pampady Page 258 
 

So IT architects have shifted focus from the central data center to the logical edge of the 

infrastructure -- taking storage and computing resources from the data center and moving those 

resources to the point where the data is generated. The principle is straightforward: If you can't 

get the data closer to the data center, get the data center closer to the data. The concept of edge 

computing isn't new, and it is rooted in decades-old ideas of remote computing -- such as remote 

offices and branch offices -- where it was more reliable and efficient to place computing 

resources at the desired location rather than rely on a single central location. 

 
Although only 27% of respondents have already implemented edge computing technologies, 

54% find the idea interesting.  

Edge computing puts storage and servers where the data is, often requiring little more than a 

partial rack of gear to operate on the remote LAN to collect and process the data locally. In many 

cases, the computing gear is deployed in shielded or hardened enclosures to protect the gear from 

extremes of temperature, moisture and other environmental conditions. Processing often involves 

normalizing and analyzing the data stream to look for business intelligence, and only the results 

of the analysis are sent back to the principal data center. 

The idea of business intelligence can vary dramatically. Some examples include retail 

environments where video surveillance of the showroom floor might be combined with actual 

sales data to determine the most desirable product configuration or consumer demand. Other 

examples involve predictive analytics that can guide equipment maintenance and repair before 

actual defects or failures occur. Still other examples are often aligned with utilities, such as water 

treatment or electricity generation, to ensure that equipment is functioning properly and to 

maintain the quality of output. 

 



 

Department of Computer Science and Engineering,NCERC,pampady Page 259 
 

Edge vs. cloud vs. fog computing 

Edge computing is closely associated with the concepts of cloud computing and fog computing. 

Although there is some overlap between these concepts, they aren't the same thing, and generally 

shouldn't be used interchangeably. It's helpful to compare the concepts and understand their 

differences. 

One of the easiest ways to understand the differences between edge, cloud and fog computing is 

to highlight their common theme: All three concepts relate to distributed computing and focus on 

the physical deployment of compute and storage resources in relation to the data that is being 

produced. The difference is a matter of where those resources are located. 

 
Compare edge cloud, cloud computing and edge computing to determine which model is best for 

you.  

 

 

 

 

https://internetofthingsagenda.techtarget.com/definition/fog-computing-fogging
https://internetofthingsagenda.techtarget.com/tip/Comparing-edge-computing-vs-cloud-computing


 

Department of Computer Science and Engineering,NCERC,pampady Page 260 
 

Edge.  

Edge computing is the deployment of computing and storage resources at the location where data 

is produced. This ideally puts compute and storage at the same point as the data source at the 

network edge. For example, a small enclosure with several servers and some storage might be 

installed atop a wind turbine to collect and process data produced by sensors within the turbine 

itself. As another example, a railway station might place a modest amount of compute and 

storage within the station to collect and process myriad track and rail traffic sensor data. The 

results of any such processing can then be sent back to another data center for human review, 

archiving and to be merged with other data results for broader analytics. 

Cloud.  

Cloud computing is a huge, highly scalable deployment of compute and storage resources at one 

of several distributed global locations (regions). Cloud providers also incorporate an assortment 

of pre-packaged services for IoT operations, making the cloud a preferred centralized platform 

for IoT deployments. But even though cloud computing offers far more than enough resources 

and services to tackle complex analytics, the closest regional cloud facility can still be hundreds 

of miles from the point where data is collected, and connections rely on the same temperamental 

internet connectivity that supports traditional data centers. In practice, cloud computing is an 

alternative -- or sometimes a complement -- to traditional data centers. The cloud can get 

centralized computing much closer to a data source, but not at the network edge. 

 
Unlike cloud computing, edge computing allows data to exist closer to the data sources through a 

network of edge devices.  



 

Department of Computer Science and Engineering,NCERC,pampady Page 261 
 

Fog. But the choice of compute and storage deployment isn't limited to the cloud or the edge. A 

cloud data center might be too far away, but the edge deployment might simply be too resource-

limited, or physically scattered or distributed, to make strict edge computing practical. In this 

case, the notion of fog computing can help. Fog computing typically takes a step back and puts 

compute and storage resources "within" the data, but not necessarily "at" the data. 

Fog computing environments can produce bewildering amounts of sensor or IoT data generated 

across expansive physical areas that are just too large to define an edge. Examples include smart 

buildings, smart cities or even smart utility grids. Consider a smart city where data can be used to 

track, analyze and optimize the public transit system, municipal utilities, city services and guide 

long-term urban planning. A single edge deployment simply isn't enough to handle such a load, 

so fog computing can operate a series of fog node deployments within the scope of the 

environment to collect, process and analyze data. 

Note: It's important to repeat that fog computing and edge computing share an almost identical 

definition and architecture, and the terms are sometimes used interchangeably even among 

technology experts. 

Why is edge computing important? 

Computing tasks demand suitable architectures, and the architecture that suits one type of 

computing task doesn't necessarily fit all types of computing tasks. Edge computing has emerged 

as a viable and important architecture that supports distributed computing to deploy compute and 

storage resources closer to -- ideally in the same physical location as -- the data source. In 

general, distributed computing models are hardly new, and the concepts of remote offices, 

branch offices, data center colocation and cloud computing have a long and proven track record. 

But decentralization can be challenging, demanding high levels of monitoring and control that 

are easily overlooked when moving away from a traditional centralized computing model. Edge 

computing has become relevant because it offers an effective solution to emerging network 

problems associated with moving enormous volumes of data that today's organizations produce 

and consume. It's not just a problem of amount. It's also a matter of time; applications depend on 

processing and responses that are increasingly time-sensitive. 

Consider the rise of self-driving cars. They will depend on intelligent traffic control signals. Cars 

and traffic controls will need to produce, analyze and exchange data in real time. Multiply this 

requirement by huge numbers of autonomous vehicles, and the scope of the potential problems 

becomes clearer. This demands a fast and responsive network. Edge -- and fog-- computing 

addresses three principal network limitations: bandwidth, latency and congestion or reliability. 

 Bandwidth. Bandwidth is the amount of data which a network can carry over time, 

usually expressed in bits per second. All networks have a limited bandwidth, and the 

limits are more severe for wireless communication. This means that there is a finite limit 

to the amount of data -- or the number of devices -- that can communicate data across the 

network. Although it's possible to increase network bandwidth to accommodate more 

devices and data, the cost can be significant, there are still (higher) finite limits and it 

doesn't solve other problems. 

https://internetofthingsagenda.techtarget.com/feature/Fog-nodes-simplify-edge-vs-cloud-computing-choice
https://www.techtarget.com/searchnetworking/answer/Fog-computing-vs-edge-computing-Whats-the-difference
https://www.techtarget.com/searchnetworking/feature/Explore-real-world-edge-computing-examples-for-network-teams
https://www.techtarget.com/searchnetworking/feature/Explore-real-world-edge-computing-examples-for-network-teams


 

Department of Computer Science and Engineering,NCERC,pampady Page 262 
 

 Latency. Latency is the time needed to send data between two points on a network. 

Although communication ideally takes place at the speed of light, large physical 

distances coupled with network congestion or outages can delay data movement across 

the network. This delays any analytics and decision-making processes, and reduces the 

ability for a system to respond in real time. It even cost lives in the autonomous vehicle 

example. 

 Congestion. The internet is basically a global "network of networks." Although it has 

evolved to offer good general-purpose data exchanges for most everyday computing tasks 

-- such as file exchanges or basic streaming -- the volume of data involved with tens of 

billions of devices can overwhelm the internet, causing high levels of congestion and 

forcing time-consuming data retransmissions. In other cases, network outages can 

exacerbate congestion and even sever communication to some internet users entirely - 

making the internet of things useless during outages. 

By deploying servers and storage where the data is generated, edge computing can operate many 

devices over a much smaller and more efficient LAN where ample bandwidth is used exclusively 

by local data-generating devices, making latency and congestion virtually nonexistent. Local 

storage collects and protects the raw data, while local servers can perform essential edge 

analytics -- or at least pre-process and reduce the data -- to make decisions in real time before 

sending results, or just essential data, to the cloud or central data center. 

Edge computing use cases and examples 

In principal, edge computing techniques are used to collect, filter, process and analyze data "in-

place" at or near the network edge. It's a powerful means of using data that can't be first moved 

to a centralized location -- usually because the sheer volume of data makes such moves cost-

prohibitive, technologically impractical or might otherwise violate compliance obligations, such 

as data sovereignty. This definition has spawned myriad real-world examples and use cases: 

1. Manufacturing. An industrial manufacturer deployed edge computing to monitor 

manufacturing, enabling real-time analytics and machine learning at the edge to find 

production errors and improve product manufacturing quality. Edge computing supported 

the addition of environmental sensors throughout the manufacturing plant, providing 

insight into how each product component is assembled and stored -- and how long the 

components remain in stock. The manufacturer can now make faster and more accurate 

business decisions regarding the factory facility and manufacturing operations. 

2. Farming. Consider a business that grows crops indoors without sunlight, soil or 

pesticides. The process reduces grow times by more than 60%. Using sensors enables the 

business to track water use, nutrient density and determine optimal harvest. Data is 

collected and analyzed to find the effects of environmental factors and continually 

improve the crop growing algorithms and ensure that crops are harvested in peak 

condition. 

3. Network optimization. Edge computing can help optimize network performance by 

measuring performance for users across the internet and then employing analytics to 

determine the most reliable, low-latency network path for each user's traffic. In effect, 

edge computing is used to "steer" traffic across the network for optimal time-sensitive 

traffic performance. 

https://www.techtarget.com/searchbusinessanalytics/definition/edge-analytics
https://www.techtarget.com/searchbusinessanalytics/definition/edge-analytics
https://www.techtarget.com/searchcio/feature/4-edge-computing-use-cases-delivering-value-in-the-enterprise


 

Department of Computer Science and Engineering,NCERC,pampady Page 263 
 

4. Workplace safety. Edge computing can combine and analyze data from on-site cameras, 

employee safety devices and various other sensors to help businesses oversee workplace 

conditions or ensure that employees follow established safety protocols -- especially 

when the workplace is remote or unusually dangerous, such as construction sites or oil 

rigs. 

5. Improved healthcare. The healthcare industry has dramatically expanded the amount of 

patient data collected from devices, sensors and other medical equipment. That enormous 

data volume requires edge computing to apply automation and machine learning to access 

the data, ignore "normal" data and identify problem data so that clinicians can take 

immediate action to help patients avoid health incidents in real time. 

6. Transportation. Autonomous vehicles require and produce anywhere from 5 TB to 20 

TB per day, gathering information about location, speed, vehicle condition, road 

conditions, traffic conditions and other vehicles. And the data must be aggregated and 

analyzed in real time, while the vehicle is in motion. This requires significant onboard 

computing -- each autonomous vehicle becomes an "edge." In addition, the data can help 

authorities and businesses manage vehicle fleets based on actual conditions on the 

ground. 

7. Retail. Retail businesses can also produce enormous data volumes from surveillance, 

stock tracking, sales data and other real-time business details. Edge computing can help 

analyze this diverse data and identify business opportunities, such as an effective endcap 

or campaign, predict sales and optimize vendor ordering, and so on. Since retail 

businesses can vary dramatically in local environments, edge computing can be an 

effective solution for local processing at each store. 

What are the benefits of edge computing? 

Edge computing addresses vital infrastructure challenges -- such as bandwidth limitations, excess 

latency and network congestion -- but there are several potential additional benefits to edge 

computing that can make the approach appealing in other situations. 

Autonomy. Edge computing is useful where connectivity is unreliable or bandwidth is restricted 

because of the site's environmental characteristics. Examples include oil rigs, ships at sea, remote 

farms or other remote locations, such as a rainforest or desert. Edge computing does the compute 

work on site -- sometimes on the edge device itself -- such as water quality sensors on water 

purifiers in remote villages, and can save data to transmit to a central point only when 

connectivity is available. By processing data locally, the amount of data to be sent can be vastly 

reduced, requiring far less bandwidth or connectivity time than might otherwise be necessary. 

https://internetofthingsagenda.techtarget.com/tip/Top-5-benefits-of-edge-computing-for-businesses
https://internetofthingsagenda.techtarget.com/tip/Top-5-benefits-of-edge-computing-for-businesses
https://www.techtarget.com/searchnetworking/definition/edge-device


 

Department of Computer Science and Engineering,NCERC,pampady Page 264 
 

 
Edge devices encompass a broad range of device types, including sensors, actuators and other 

endpoints, as well as IoT gateways.  

Data sovereignty. Moving huge amounts of data isn't just a technical problem. Data's journey 

across national and regional boundaries can pose additional problems for data security, privacy 

and other legal issues. Edge computing can be used to keep data close to its source and within 

the bounds of prevailing data sovereignty laws, such as the European Union's GDPR, which 

defines how data should be stored, processed and exposed. This can allow raw data to be 

processed locally, obscuring or securing any sensitive data before sending anything to the cloud 

or primary data center, which can be in other jurisdictions. 



 

Department of Computer Science and Engineering,NCERC,pampady Page 265 
 

 
Research shows that the move toward edge computing will only increase over the next couple of 

years.  

Edge security. Finally, edge computing offers an additional opportunity to implement 

and ensure data security. Although cloud providers have IoT services and specialize in complex 

analysis, enterprises remain concerned about the safety and security of data once it leaves the 

edge and travels back to the cloud or data center. By implementing computing at the edge, any 

data traversing the network back to the cloud or data center can be secured through encryption, 

and the edge deployment itself can be hardened against hackers and other malicious activities -- 

even when security on IoT devices remains limited. 

Challenges of edge computing 

Although edge computing has the potential to provide compelling benefits across a multitude of 

use cases, the technology is far from foolproof. Beyond the traditional problems of network 

limitations, there are several key considerations that can affect the adoption of edge computing: 

 Limited capability. Part of the allure that cloud computing brings to edge -- or fog -- 

computing is the variety and scale of the resources and services. Deploying an 

infrastructure at the edge can be effective, but the scope and purpose of the edge 

deployment must be clearly defined -- even an extensive edge computing deployment 

serves a specific purpose at a pre-determined scale using limited resources and few 

services 

https://internetofthingsagenda.techtarget.com/tip/Edge-computing-security-risks-and-how-to-overcome-them
https://www.techtarget.com/searchnetworking/answer/What-are-edge-computing-challenges-for-the-network


 

Department of Computer Science and Engineering,NCERC,pampady Page 266 
 

 

 Connectivity. Edge computing overcomes typical network limitations, but even the most 

forgiving edge deployment will require some minimum level of connectivity. It's critical 

to design an edge deployment that accommodates poor or erratic connectivity and 

consider what happens at the edge when connectivity is lost. Autonomy, AI and graceful 

failure planning in the wake of connectivity problems are essential to successful edge 

computing. 

 Security. IoT devices are notoriously insecure, so it's vital to design an edge computing 

deployment that will emphasize proper device management, such as policy-driven 

configuration enforcement, as well as security in the computing and storage resources -- 

including factors such as software patching and updates -- with special attention to 

encryption in the data at rest and in flight. IoT services from major cloud providers 

include secure communications, but this isn't automatic when building an edge site from 

scratch. 

 Data lifecycles. The perennial problem with today's data glut is that so much of that data 

is unnecessary. Consider a medical monitoring device -- it's just the problem data that's 

critical, and there's little point in keeping days of normal patient data. Most of the data 

involved in real-time analytics is short-term data that isn't kept over the long term. A 

business must decide which data to keep and what to discard once analyses are 

performed. And the data that is retained must be protected in accordance with business 

and regulatory policies. 

  



 

Department of Computer Science and Engineering,NCERC,pampady Page 267 
 

Edge computing implementation 

Edge computing is a straightforward idea that might look easy on paper, but developing a 

cohesive strategy and implementing a sound deployment at the edge can be a challenging 

exercise. 

The first vital element of any successful technology deployment is the creation of a meaningful 

business and technical edge strategy. Such a strategy isn't about picking vendors or gear. Instead, 

an edge strategy considers the need for edge computing. Understanding the "why" demands a 

clear understanding of the technical and business problems that the organization is trying to 

solve, such as overcoming network constraints and observing data sovereignty. 

 
An edge data center requires careful upfront planning and migration strategies.  

Such strategies might start with a discussion of just what the edge means, where it exists for the 

business and how it should benefit the organization. Edge strategies should also align with 

existing business plans and technology roadmaps. For example, if the business seeks to reduce its 

centralized data center footprint, then edge and other distributed computing technologies might 

align well. 

As the project moves closer to implementation, it's important to evaluate hardware and software 

options carefully. There are many vendors in the edge computing space, including Adlink 

Technology, Cisco, Amazon, Dell EMC and HPE. Each product offering must be evaluated for 

cost, performance, features, interoperability and support. From a software perspective, tools 

should provide comprehensive visibility and control over the remote edge environment. 

https://internetofthingsagenda.techtarget.com/tip/How-to-implement-edge-computing-in-5-steps
https://www.techtarget.com/searchdatacenter/tip/Top-guidelines-for-edge-computing-software-selection
https://www.techtarget.com/searchcio/tip/5-edge-computing-vendors-for-CIOs-to-watch


 

Department of Computer Science and Engineering,NCERC,pampady Page 268 
 

The actual deployment of an edge computing initiative can vary dramatically in scope and scale, 

ranging from some local computing gear in a battle-hardened enclosure atop a utility to a vast 

array of sensors feeding a high-bandwidth, low-latency network connection to the public cloud. 

No two edge deployments are the same. It's these variations that make edge strategy and 

planning so critical to edge project success. 

An edge deployment demands comprehensive monitoring. Remember that it might be difficult -- 

or even impossible -- to get IT staff to the physical edge site, so edge deployments should be 

architected to provide resilience, fault-tolerance and self-healing capabilities. Monitoring tools 

must offer a clear overview of the remote deployment, enable easy provisioning and 

configuration, offer comprehensive alerting and reporting and maintain security of the 

installation and its data. Edge monitoring often involves an array of metrics and KPIs, such as 

site availability or uptime, network performance, storage capacity and utilization, and compute 

resources. 

And no edge implementation would be complete without a careful consideration of edge 

maintenance: 

 Security. Physical and logical security precautions are vital and should involve tools that 

emphasize vulnerability management and intrusion detection and prevention. Security 

must extend to sensor and IoT devices, as every device is a network element that can be 

accessed or hacked -- presenting a bewildering number of possible attack surfaces. 

 Connectivity. Connectivity is another issue, and provisions must be made for access to 

control and reporting even when connectivity for the actual data is unavailable. Some 

edge deployments use a secondary connection for backup connectivity and control. 

 Management. The remote and often inhospitable locations of edge deployments make 

remote provisioning and management essential. IT managers must be able to see what's 

happening at the edge and be able to control the deployment when necessary. 

 Physical maintenance. Physical maintenance requirements can't be overlooked. IoT 

devices often have limited lifespans with routine battery and device replacements. Gear 

fails and eventually requires maintenance and replacement. Practical site logistics must 

be included with maintenance. 

Edge computing, IoT and 5G possibilities 

Edge computing continues to evolve, using new technologies and practices to enhance its 

capabilities and performance. Perhaps the most noteworthy trend is edge availability, and edge 

services are expected to become available worldwide by 2028. Where edge computing is often 

situation-specific today, the technology is expected to become more ubiquitous and shift the way 

that the internet is used, bringing more abstraction and potential use cases for edge technology. 

This can be seen in the proliferation of compute, storage and network appliance products 

specifically designed for edge computing. More multivendor partnerships will enable better 

product interoperability and flexibility at the edge. An example includes a partnership between 

AWS and Verizon to bring better connectivity to the edge. 

https://www.techtarget.com/searchdatacenter/tip/4-essential-KPIs-for-edge-computing-management
https://www.techtarget.com/searchcio/tip/Top-edge-computing-trends-to-watch-in-2020


 

Department of Computer Science and Engineering,NCERC,pampady Page 269 
 

Wireless communication technologies, such as 5G and Wi-Fi 6, will also affect edge 

deployments and utilization in the coming years, enabling virtualization and automation 

capabilities that have yet to be explored, such as better vehicle autonomy and workload 

migrations to the edge, while making wireless networks more flexible and cost-effective. 

 
This diagram shows in detail about how 5G provides significant advancements for edge 

computing and core networks over 4G and LTE capabilities.  

Edge computing gained notice with the rise of IoT and the sudden glut of data such devices 

produce. But with IoT technologies still in relative infancy, the evolution of IoT devices will also 

have an impact on the future development of edge computing. One example of such future 

alternatives is the development of micro modular data centers (MMDCs). The MMDC is 

basically a data center in a box, putting a complete data center within a small mobile system that 

can be deployed closer to data -- such as across a city or a region -- to get computing much closer 

to data without putting the edge at the data proper. 

 

 

 

 


